試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年甘肅省高一(下)期末數學試卷

發(fā)布:2024/6/29 8:0:10

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.若集合A={-3,-1,2,6},B={x|x>0},則A∩B=( ?。?/h2>

    組卷:160引用:5難度:0.9
  • 2.“x2-x-6>0”是“x<-5”的( ?。?/h2>

    組卷:278引用:5難度:0.7
  • 3.復數(-1+2i)(3-i)在復平面內對應的點位于( ?。?/h2>

    組卷:50引用:5難度:0.7
  • 4.sin145°cos35°=(  )

    組卷:91難度:0.5
  • 5.若正方形ABCD的邊長為2,則
    |
    AD
    -
    AB
    +
    BD
    |
    =( ?。?/h2>

    組卷:105難度:0.7
  • 6.若x0是方程2x=12-3x的解,則x0∈( ?。?/h2>

    組卷:83引用:5難度:0.7
  • 7.一個內壁底面半徑為2的圓柱體玻璃杯中盛有體積為V的水,若放入一個玻璃球(球的半徑與圓柱體玻璃杯內壁的底面半徑相同)后,水恰好淹沒了玻璃球,則V=(  )

    組卷:75引用:7難度:0.6

四、解答題:本題共6小題,共70分.解答應寫出必要的文字說明、證明過程或演算步驟.

  • 21.如圖1,正方形ABCD和正方形EFGH的中心重合,AB=3EF=6,HG∥CD,J、K、L、I分別為AD、AB、BC、CD的中點,將圖中的四塊陰影部分裁剪下來,然后將△HEI、△EFJ、△FGK、△GHL分別沿著HE、EF、FG、GH翻折,使得點I、J、K、L與點P重合,得到如圖2所示的四棱錐P-EFGH.
    (1)求直線PE與底面EFGH所成角的余弦值;
    (2)若M為PF的中點,求M到平面PGH的距離.

    組卷:30引用:6難度:0.5
  • 22.某高校的入學面試中有A,B,C三道題目,規(guī)則如下:第一環(huán)節(jié),面試者先從三道題目中隨機抽取一道,若答對抽到的題目,則面試通過,若沒答對抽到的題目,則進入第二環(huán)節(jié);第二環(huán)節(jié),該面試者從剩下的兩道題目中隨機抽取一道,若答對抽到的題目,則面試通過,若沒答對抽到的題目,則進入第三環(huán)節(jié);第三環(huán)節(jié),若該面試者答對剩下的一道題目,則面試通過,若沒有答對剩下的題目,則面試失?。僭O對抽到的不同題目能否答對是獨立的,李明答對A,B,C題的概率依次是
    1
    2
    1
    3
    ,
    1
    4

    (1)求李明第一環(huán)節(jié)抽中A題,且第一環(huán)節(jié)通過面試的概率;
    (2)求李明第二環(huán)節(jié)或第三環(huán)節(jié)通過面試的概率.

    組卷:150引用:7難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正