試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

人教五四新版九年級(上)中考題單元試卷:第31章 圓(24)

發(fā)布:2024/4/20 14:35:0

一、選擇題(共1小題)

  • 菁優(yōu)網(wǎng)1.如圖,P為⊙O的直徑BA延長線上的一點(diǎn),PC與⊙O相切,切點(diǎn)為C,點(diǎn)D是⊙O上一點(diǎn),連接PD.已知PC=PD=BC.下列結(jié)論:
    (1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
    其中正確的個(gè)數(shù)為(  )

    組卷:5053引用:79難度:0.7

二、填空題(共1小題)

  • 菁優(yōu)網(wǎng)2.如圖,已知BC是⊙O的直徑,AC切⊙O于點(diǎn)C,AB交⊙O于點(diǎn)D,E為AC的中點(diǎn),連接DE.
    (1)若AD=DB,OC=5,求切線AC的長;
    (2)求證:ED是⊙O的切線.

    組卷:3626引用:70難度:0.5

三、解答題(共28小題)

  • 菁優(yōu)網(wǎng)3.如圖,以線段AB為直徑作⊙O,CD與⊙O相切于點(diǎn)E,交AB的延長線于點(diǎn)D,連接BE,過點(diǎn)O作OC∥BE交切線DE于點(diǎn)C,連接AC.
    (1)求證:AC是⊙O的切線;
    (2)若BD=OB=4,求弦AE的長.

    組卷:3862引用:68難度:0.5
  • 菁優(yōu)網(wǎng)4.如圖,射線PA切⊙O于點(diǎn)A,連接PO.
    (1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫作法),并證明:PC是⊙O的切線;
    (2)在(1)的條件下,若PC切⊙O于點(diǎn)B,AB=AP=4,求
    ?
    AB
    的長.

    組卷:713引用:60難度:0.5
  • 菁優(yōu)網(wǎng)5.如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點(diǎn)A,PB與AC的延長線交于點(diǎn)M,∠COB=∠APB.
    (1)求證:PB是⊙O的切線;
    (2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長.

    組卷:2389引用:62難度:0.5
  • 菁優(yōu)網(wǎng)6.如圖,已知PC平分∠MPN,點(diǎn)O是PC上任意一點(diǎn),PM與⊙O相切于點(diǎn)E,交PC于A、B兩點(diǎn).
    (1)求證:PN與⊙O相切;
    (2)如果∠MPC=30°,PE=2
    3
    ,求劣弧
    ?
    BE
    的長.

    組卷:1200引用:60難度:0.5
  • 菁優(yōu)網(wǎng)7.如圖,CE是⊙O的直徑,BD切⊙O于點(diǎn)D,DE∥BO,CE的延長線交BD于點(diǎn)A.
    (1)求證:直線BC是⊙O的切線;
    (2)若AE=2,tan∠DEO=
    2
    ,求AO的長.

    組卷:5763引用:68難度:0.5
  • 菁優(yōu)網(wǎng)8.如圖,PB為⊙O的切線,B為切點(diǎn),過B作OP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連接PA、AO,并延長AO交⊙O于點(diǎn)E,與PB的延長線交于點(diǎn)D.
    (1)求證:PA是⊙O的切線;
    (2)若
    OC
    AC
    =
    2
    3
    ,且OC=4,求PA的長和tanD的值.

    組卷:4955引用:65難度:0.5
  • 菁優(yōu)網(wǎng)9.如圖,AC平分∠MAN,點(diǎn)O在射線AC上,以點(diǎn)O為圓心,半徑為1的⊙O與AM相切于點(diǎn)B,連接BO并延長交⊙O于點(diǎn)D,交AN于點(diǎn)E.
    (1)求證:AN是⊙O的切線;
    (2)若∠MAN=60°,求圖中陰影部分的面積(結(jié)果保留根號和π).

    組卷:522引用:58難度:0.5
  • 菁優(yōu)網(wǎng)10.如圖,BC是⊙O的直徑,A是⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,交BA的延長線于點(diǎn)D,取CD的中點(diǎn)E,AE的延長線與BC的延長線交于點(diǎn)P.
    (1)求證:AP是⊙O的切線;
    (2)OC=CP,AB=6,求CD的長.

    組卷:1187引用:67難度:0.5

三、解答題(共28小題)

  • 菁優(yōu)網(wǎng)29.如圖1,△ABC中,CA=CB,點(diǎn)O在高CH上,OD⊥CA于點(diǎn)D,OE⊥CB于點(diǎn)E,以O(shè)為圓心,OD為半徑作⊙O.
    (1)求證:⊙O與CB相切于點(diǎn)E;
    (2)如圖2,若⊙O過點(diǎn)H,且AC=5,AB=6,連接EH,求△BHE的面積和tan∠BHE的值.

    組卷:2171引用:55難度:0.3
  • 菁優(yōu)網(wǎng)30.如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
    9
    2

    (1)求OD、OC的長;
    (2)求證:△DOC∽△OBC;
    (3)求證:CD是⊙O切線.

    組卷:2182引用:53難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正