2022-2023學年北京市東城區(qū)東直門中學高一(下)期末數(shù)學復習試卷(一)
發(fā)布:2024/7/10 8:0:8
一.選擇題:(本題有12道小題,每小題4分,共48分)
-
1.若cosα=
,則sin(35)=( ?。?/h2>3π2-α組卷:759引用:4難度:0.8 -
2.在復平面內,復數(shù)z對應的點的坐標是(-1,
),則z的共軛復數(shù)3=( ?。?/h2>z組卷:2095引用:12難度:0.8 -
3.已知五位同學高一入學時年齡的平均數(shù)、中位數(shù)均為16,方差為1.那么三年后,下列說法錯誤的是( ?。?/h2>
組卷:195引用:2難度:0.7 -
4.某校組織全體學生參加了主題為“建黨百年,薪火相傳”的知識競賽,隨機抽取了200名學生進行成績統(tǒng)計,發(fā)現(xiàn)抽取的學生的成績都在50分至100分之間,進行適當分組后(每組為左閉右開的區(qū)間),畫出頻率分布直方圖如圖所示.下列說法正確的是?( ?。?/h2>
組卷:155引用:1難度:0.7 -
5.一個正方體與一個球表面積相等,那么它們的體積比是( )
組卷:319引用:3難度:0.9 -
6.已知向量a,b是兩個單位向量,則“<a,b>為銳角”是“
”的( ?。?/h2>|a-b|<2組卷:343引用:11難度:0.7 -
7.已知正四棱錐S-ABCD,底面邊長是2,體積是
,那么這個四棱錐的側棱長為( ?。?/h2>433組卷:541引用:7難度:0.6 -
8.已知向量
,a滿足b+a=(2,3),b-a=(-2,1),則|b|2-|a|2=( ?。?/h2>b組卷:2744引用:12難度:0.8
三.解答題:(本題有6小題,每小題12分,共72分)
-
23.如圖1,矩形ABCD中,AB=4,AD=2,E,F(xiàn)分別為AB,DC的中點.將四邊形AEFD沿EF折起至四邊形的位置,如圖2.
(Ⅰ)求證:EF⊥平面A1EB;
(Ⅱ)若點A1在平面EFCB上的射影為BE的中點G,求三棱錐F-A1BC的體積;
(Ⅲ)當平面A1EFD1與平面EFCB垂直時,作正方體A1D1NM-EFCB如圖3.若平面α∥平面A1FB,且平面α截該正方體所得圖形的面積記為S.
(?。┤鬋∈α,在圖中畫出截面并求S;
(ⅱ)S的最大值為 .(直接寫出結果)組卷:96引用:1難度:0.5 -
24.若集合A=B1∪B2∪……∪Bn,其中B1,B2,……,Bn為非空集合,Bi∩Bj=?(1≤i<j≤n),則稱集合{B1,B2,……,Bn}為集合A的一個n劃分.
(Ⅰ)寫出集合A={1,2,3}的所有不同的2劃分;
(Ⅱ)設{B1,B2}為有理數(shù)集Q的一個2劃分,且滿足對任意x∈B1,任意y∈B2,都有x<y.則下列四種情況哪些可能成立,哪些不可能成立?可能成立的情況請舉出一個例子,不能成立的情況請說明理由;
①B1中的元素存在最大值,B2中的元素不存在最小值;
②B1中的元素不存在最大值,B2中的元素存在最小值;
③B1中的元素不存在最大值,B2中的元素不存在最小值;
④B1中的元素存在最大值,B2中的元素存在最小值.
(Ⅲ)設集合A={1,2,3,……,16},對于集合A的任意一個3劃分{B1,B2,B3},證明:存在i∈{1,2,3},存在a,b∈Bi,使得b-a∈Bi.組卷:219引用:5難度:0.4