1994年第6屆“五羊杯”初中數(shù)學(xué)競(jìng)賽初二試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(每小題5分,共50分)
-
1.設(shè)a=-1×(1-2)-3,b=-1-(2-3),c=-[(-1)-(-2)-3],則-a-[-b-(-c)]=( ?。?/h2>
組卷:169引用:1難度:0.9 -
2.方程
的解是( ?。?/h2>-212[-225(x6-523)-215]+357=4314組卷:252引用:1難度:0.9 -
3.不等式
的解是( ?。?/h2>36-123(225+115y)<40組卷:58引用:1難度:0.9 -
4.給出下列三個(gè)等式
①(3a2-2a-1)2+(4a2+4a)2=(5a2+2a+1)2
②m3-(n-m)3m3+n3=m-(n-m)m+n(其中m+n≠0)
③x5+x4+1=(x3-x+1)(x2+x+1)
其中正確命題的個(gè)數(shù)是( ?。?/h2>組卷:38引用:1難度:0.9 -
5.小林計(jì)算三個(gè)數(shù)a、b、c(a<b<c)的算術(shù)平均值,但他先計(jì)算a,b的平均值x,再計(jì)算x,c的平均值y,便把y當(dāng)作a,b,c的平均值了,實(shí)際上小林是把a(bǔ),b,c的平均值( ?。?/h2>
組卷:96引用:1難度:0.9 -
6.已知
,則a3-b2=( )x+1x=3,1x2+x2=a,x3+1x3=b組卷:355引用:1難度:0.9
二、填空題(每小題5分,共50分)
-
19.在有理數(shù)范圍內(nèi)因式分解:
(1)16(6x-1)(2x-1)(3x+1)(x-1)+25=
(2)(6x-1)(2x-1)(3x-1)(x-1)+x2=
(3)(6x-1)(4x-1)(3x-1)(x-1)+9x4=組卷:1316引用:1難度:0.1 -
20.加油站的油庫(kù)有兩條輸出油管A、B和一條輸入油管C,油庫(kù)空時(shí),同時(shí)打開(kāi)A(給汽車(chē)加油)和C(加油給油庫(kù)),2小時(shí)油庫(kù)裝滿;若改為同時(shí)打開(kāi)B和C,則4小時(shí)裝滿;油庫(kù)滿時(shí),先同時(shí)打開(kāi)A和B3小時(shí),然后打開(kāi)C5小時(shí)(A、B也開(kāi)著),油庫(kù)又滿,則當(dāng)油庫(kù)空時(shí),單獨(dú)打開(kāi)C,小時(shí)可以裝滿.
組卷:41引用:1難度:0.5