試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2022-2023學(xué)年海南省儋州市川綿中學(xué)高二(下)期末數(shù)學(xué)試卷

發(fā)布:2024/6/14 8:0:9

一、單選題(本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題意要求的.)

  • 1.已知集合A={1,2,3,4},B={-1,0,1},則A∩B=( ?。?/h2>

    組卷:106引用:3難度:0.7
  • 2.已知全部是正項的等比數(shù)列{an}的前n項和為Sn,若a1=2,S3=14,則其公比q為(  )

    組卷:271引用:4難度:0.8
  • 3.函數(shù)
    f
    x
    =
    1
    2
    x
    2
    -
    lnx
    的極小值為 ( ?。?/h2>

    組卷:608引用:5難度:0.5
  • 4.已知數(shù)列{an}是等差數(shù)列,若a1-a9+a17=7,則a3+a15=( ?。?/h2>

    組卷:70引用:5難度:0.9
  • 5.已知(ax+1)5的展開式中x3的系數(shù)是10,則實數(shù)a的值是( ?。?/h2>

    組卷:21引用:5難度:0.7
  • 6.某數(shù)學(xué)興趣小組把兩個0、一個2、一個1與一個7組成一個五位數(shù)(如20107),若其中兩個0不相鄰,則這個五位數(shù)的個數(shù)為(  )

    組卷:33引用:3難度:0.7
  • 7.已知A,B為兩個隨機事件,0<P(B)<1,P(B)=0.3,P(B|A)=0.9,
    P
    B
    |
    A
    =
    0
    .
    2
    ,則P(A)=( ?。?/h2>

    組卷:258引用:4難度:0.7

四、解答題(本題共6小題,17題10分,其它題12分,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)

  • 20.甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為
    1
    3
    與p,且乙投球2次均命中的概率為
    1
    16

    (1)求甲投球2次,命中1次的概率;
    (2)若乙投球3次,設(shè)命中的次數(shù)為X,求X的分布列.

    組卷:169引用:4難度:0.5
  • 21.已知函數(shù)f(x)=lnx+x2+ax+2(a∈R).
    (1)當(dāng)a=-3時,求f(x)的極值;
    (2)若函數(shù)f(x)至少有兩個不同的零點,求a的最大值.

    組卷:33引用:1難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.6 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正