2021-2022學(xué)年吉林省長(zhǎng)春十一中高二(下)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、單項(xiàng)選擇題(本題共8小題,每小題5分.在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)是符合題目要求的.)
-
1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩?RB=( ?。?/h2>
組卷:247引用:36難度:0.9 -
2.下面四個(gè)條件中,使a>b成立的充分而不必要的條件是( ?。?/h2>
組卷:224引用:133難度:0.7 -
3.設(shè)某工廠倉(cāng)庫(kù)中有10盒同樣規(guī)格的零部件,已知其中有4盒、3盒、3盒依次是甲廠、乙廠、丙廠生產(chǎn)的.且甲、乙、丙三廠生產(chǎn)該種零部件的次品率依次為
,現(xiàn)從這10盒中任取一盒,再?gòu)倪@盒中任取一個(gè)零部件,則取得的零部件是次品的概率為( ?。?/h2>110,115,120組卷:488引用:5難度:0.8 -
4.曲線y=e-2x+1在點(diǎn)(0,2)處的切線與直線y=0和y=x圍成的三角形的面積為( ?。?/h2>
組卷:2936引用:62難度:0.9 -
5.學(xué)校從高一3名男數(shù)學(xué)老師和3名女?dāng)?shù)學(xué)老師中選派4人,擔(dān)任本次模擬考試數(shù)學(xué)閱卷任務(wù),則在選派的4人中至少有2名男老師的條件下,有2名女老師的概率為( ?。?/h2>
組卷:262引用:4難度:0.7 -
6.3位男生和3位女生共6位同學(xué)排成一排,若男生甲不站兩端,且3位女生中有且僅有兩位女生相鄰,則不同的排法共有( ?。┓N.
組卷:98引用:12難度:0.9 -
7.存在函數(shù)f(x)滿足,對(duì)任意x∈R都有( ?。?/h2>
組卷:88引用:2難度:0.7
四、解答題:本題共6小題,第17題10分,第18-22題每題12分,共70分.
-
21.某柑桔基地因冰雪災(zāi)害,使得果林嚴(yán)重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實(shí)施;若實(shí)施方案一,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實(shí)施方案二,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案,第二年與第一年相互獨(dú)立.令ξi(i=1,2)表示方案實(shí)施兩年后柑桔產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫(xiě)出ξ1、ξ2的分布列;
(2)實(shí)施哪種方案,兩年后柑桔產(chǎn)量超過(guò)災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實(shí)施兩年后柑桔產(chǎn)量達(dá)不到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來(lái)效益10萬(wàn)元;兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來(lái)效益15萬(wàn)元;柑桔產(chǎn)量超過(guò)災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來(lái)效益20萬(wàn)元;問(wèn)實(shí)施哪種方案所帶來(lái)的平均效益更大?組卷:435引用:2難度:0.1 -
22.函數(shù)
存在兩個(gè)極值點(diǎn)x1,x2,且x2>x1>0.f(x)=1x-x+alnx
(1)求a的取值范圍;
(2)若f(x2)-f(x1)≥ka-3,求正實(shí)數(shù)k的最大值.組卷:111引用:2難度:0.4