2022-2023學(xué)年天津市濱海新區(qū)漢沽一中高二(下)第一次質(zhì)檢數(shù)學(xué)試卷
發(fā)布:2024/7/20 8:0:8
一、選擇題(本大題共12小題,共36分)
-
1.函數(shù)y=ax(a>0,且a≠1)的導(dǎo)數(shù)為( )
組卷:258引用:3難度:0.9 -
2.數(shù)列
,…,則該數(shù)列的第n項(xiàng)為( ?。?/h2>35,47,59,611組卷:587引用:7難度:0.8 -
3.在等差數(shù)列{an}中,a1=4,a10=22,則a3=( ?。?/h2>
組卷:427引用:3難度:0.8 -
4.若f(x)=2x3+x2-5,則f'(1)=( ?。?/h2>
組卷:293引用:4難度:0.9 -
5.函數(shù)f(x)在x=4處的切線方程為y=3x+5,則f(4)+f'(4)=( ?。?/h2>
組卷:74引用:5難度:0.7 -
6.已知函數(shù)f(x)=x3-3x2+a,則f(x)的極值點(diǎn)個(gè)數(shù)為( ?。?/h2>
組卷:135引用:2難度:0.7 -
7.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,3a1,
,2a2成等差數(shù)列,則q=( ?。?/h2>12a3組卷:450引用:4難度:0.8
三、解答題(本大題共3小題,共32分)
-
22.已知公比大于1的等比數(shù)列{an}的前6項(xiàng)和為126,且4a2,3a3,2a4成等差數(shù)列.{bn}是等差數(shù)列,b2=3,S5=20.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若cn=anbn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn.組卷:181引用:2難度:0.6 -
23.已知函數(shù)
(a∈R).f(x)=(2a-1)lnx-1x-2ax
(1)a=0時(shí),求函數(shù)f(x)的單調(diào)性;
(2)a≠0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)若對(duì)任意的a∈[-2,-1),當(dāng)x1,x2∈[1,e]時(shí)恒有成立,求實(shí)數(shù)m的取值范圍.(m-2e)a-1e+2≥|f(x1)-f(x2)|組卷:94引用:2難度:0.5