2023-2024學年北京166中高三(上)期中數(shù)學試卷
發(fā)布:2024/10/6 9:0:1
一、選擇題:本題共10小題,每小題4分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項.
-
1.已知集合A={x|x<-1或x>1},B={x|0≤x<2},則集合A∪B=( )
組卷:53引用:3難度:0.8 -
2.在復平面內(nèi),復數(shù)
對應的點位于( ?。?/h2>2+3ii組卷:262引用:7難度:0.8 -
3.“a>b>0”是“
”的( ?。?/h2>a>b組卷:32引用:1難度:0.9 -
4.已知向量
,a=(1,2),b=(1,0).若c=(3,4),則實數(shù)λ=( )(a+λb)∥c(λ∈R)組卷:568引用:11難度:0.9 -
5.已知實數(shù)x,y滿足ax<ay(0<a<1),則下列關系式恒成立的是( ?。?/h2>
組卷:122引用:3難度:0.7 -
6.函數(shù)
的圖像關于直線f(x)=cos(ωx-π3)(ω>0)對稱,則ω可以為( ?。?/h2>x=π2組卷:375引用:4難度:0.7 -
7.關于函數(shù)f(x)=sinx-xcosx,下列說法錯誤的是( ?。?/h2>
組卷:94引用:1難度:0.5
三、解答題:本題共6小題,共85分.解答應寫出文字說明、證明過程或演算步驟
-
20.已知函數(shù)f(x)=x-lnx-2.
(Ⅰ)求f(x)的極值;
(Ⅱ)已知t∈Z,且xlnx+x>t(x-1)對任意的x>1恒成立,求t的最大值;
(Ⅲ)設g(x)=f(x+1)-e+3的零點為m(m>1),當x1,x2∈(m,+∞),且x1>x2時,證明:.ex1-x2>ln(x1+1)ln(x2+1)組卷:270引用:3難度:0.2 -
21.若無窮數(shù)列{an}滿足,a1是正實數(shù),當n≥2時,|an-an-1|=max{a1,a2,?,an-1},則稱{an}是“Y-數(shù)列”.
(1)若{an}是“Y-數(shù)列”且a1=1,寫出a4的所有可能值;
(2)設{an}是“Y-數(shù)列”,證明:{an}是等差數(shù)列充要條件是{an}單調(diào)遞減;{an}是等比數(shù)列充要條件是{an}單調(diào)遞增;
(3)若{an}是“Y-數(shù)列”且是周期數(shù)列(即存在正整數(shù)T,使得對任意正整數(shù)n,都有aT+n=an),求集合{1≤i≤2018|ai=a1}的元素個數(shù)的所有可能值的個數(shù).組卷:79引用:1難度:0.1