《第1章 集合與函數(shù)概念》2013年單元測(cè)試卷5
發(fā)布:2024/11/26 11:0:2
一、選擇題:(本大題共12小題,每小題5分,共60分.每小題只有一個(gè)選項(xiàng)是正確的)
-
1.集合{x∈N+|x-3<2}的另一種表示法是( )
A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5} 組卷:828引用:10難度:0.9 -
2.若a2x=
-1,則2等于( ?。?/h2>a3x+a-3xax+a-xA.2 -12B.2-2 2C.2 +12D. +12組卷:830引用:5難度:0.7 -
3.函數(shù)f(x)=ax與g(x)=ax-a的圖象有可能是圖中的( ?。?/h2>
A. B. C. D. 組卷:278引用:9難度:0.9 -
4.如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最大值為5,那么f(x)在區(qū)間[-7,-3]上是( ?。?/h2>
A.增函數(shù)且最小值為-5 B.增函數(shù)且最大值為-5 C.減函數(shù)且最大值是-5 D.減函數(shù)且最小值是-5 組卷:1107引用:146難度:0.7 -
5.下列各組函數(shù)f(x)與g(x)的圖象相同的是( ?。?/h2>
A. f(x)=x,g(x)=(x)2B.f(x)=x2,g(x)=(x+1)2 C.f(x)=1,g(x)=x0 D. f(x)=|x|,g(x)=x-x(x≥0)(x<0)組卷:96引用:28難度:0.9 -
6.已知函數(shù)f(x)的定義域是(0,1),那么f(2x)的定義域是( ?。?/h2>
A.(0,1) B.(-∞,1) C.(-∞,0) D.(0,+∞) 組卷:900引用:15難度:0.7 -
7.函數(shù)y=
的單調(diào)遞增區(qū)間是( ?。?/h2>(12)-x2+2xA.(-∞,1] B.[0,1] C.[1,+∞) D.[1,2] 組卷:38引用:2難度:0.7
三、解答題:(本大題6個(gè)小題,共74分,請(qǐng)寫出詳細(xì)的解題過(guò)程)
-
21.已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=
.-23
(1)求證f(x)為奇函數(shù);
(2)求證:f(x)為R上的減函數(shù);
(3)解關(guān)于x的不等式:.(其中b>2)12f(2bx)-f(x)>12f(bx)-f(b)組卷:180引用:1難度:0.3 -
22.已知函數(shù)
.f(x)=|1-1x|,(x>0)
(1)當(dāng)0<a<b且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.組卷:501引用:8難度:0.3