試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年湖北省襄陽四中高二(上)期末數(shù)學試卷

發(fā)布:2024/11/4 0:30:2

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.設(shè)a∈R,則“a=-3”是“直線l1:ax+2y-1=0與直線l2:(a+1)x+ay-2=0垂直”的( ?。?/h2>

    組卷:121引用:3難度:0.8
  • 2.若函數(shù)y=f(x)在x=x0處的導數(shù)為1,則
    lim
    Δ
    x
    0
    f
    x
    0
    +
    2
    Δ
    x
    -
    f
    x
    0
    -
    Δ
    x
    Δ
    x
    =( ?。?/h2>

    組卷:121引用:5難度:0.7
  • 3.已知圓O1:x2+y2=1與圓O2:(x-2)2+(y-2)2=16,圓I與圓O1、O2均相切,則圓I的圓心I的軌跡中包含了哪條曲線( ?。?/h2>

    組卷:47引用:2難度:0.6
  • 4.已知等比數(shù)列{an}滿足:a2+a4+a6+a8=20,a2?a8=8,則
    1
    a
    2
    +
    1
    a
    4
    +
    1
    a
    6
    +
    1
    a
    8
    的值為(  )

    組卷:299引用:4難度:0.7
  • 5.“中國剩余定理”又稱“孫子定理”,1852年英國來華傳教偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”“中國剩余定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將正整數(shù)中能被3除余1且被7除余4的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列{an},則a6=(  )

    組卷:42引用:1難度:0.6
  • 6.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,則BM與AN所成角的余弦值為( ?。?/h2>

    組卷:6383引用:117難度:0.9
  • 7.已知拋物線C:y2=4x的焦點為F,準線為l,直線l':
    7
    x-y+2=0,動點M在C上運動,記點M到直線l與l'的距離分別為d1,d2,O為坐標原點,則當d1+d2最小時,sin∠MFO=( ?。?/h2>

    組卷:48引用:1難度:0.6

四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或者演算步驟.

  • 21.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點分別為F1(-c,0)和F2(c,0),離心率是
    3
    2
    ,直線x=c被橢圓截得的弦長等于2.
    (1)求橢圓C的標準方程;
    (2)若直線l:x+2y-2=0與橢圓相交于A,B兩點,O為坐標原點,求△OAB的面積.

    組卷:248引用:4難度:0.7
  • 22.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足對任意n∈N*,都有a13+a23+…+an3=Sn2
    (1)求證:數(shù)列{an}為等差數(shù)列;
    (2)若bn=(-1)n(2an2,求數(shù)列{bn}的前n項和Tn

    組卷:159引用:2難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正