2023年天津市紅橋區(qū)高考數(shù)學(xué)一模試卷
發(fā)布:2024/11/1 23:0:1
一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(?UB)等于( ?。?/h2>
組卷:736引用:37難度:0.9 -
2.“|x-1|<2”是“x<3”的( ?。?/h2>
組卷:290引用:17難度:0.9 -
3.函數(shù)f(x)=
的大致圖象是( ?。?/h2>ln|x|x2組卷:740引用:7難度:0.7 -
4.某校有200位教職員工,他們每周用于鍛煉所用時間的頻率分布直方圖如圖所示.據(jù)圖估計,每周鍛煉時間在[8,12]小時內(nèi)的人數(shù)為( ?。?/h2>
組卷:174引用:2難度:0.9 -
5.拋物線y2=4x的焦點到雙曲線
的漸近線的距離是x2a2-y2b2=1(a>0,b>0),則該雙曲線的離心率為( ?。?/h2>32組卷:868引用:7難度:0.8 -
6.已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是( )
組卷:1151引用:5難度:0.7
三、解答題:本大題共5個小題,共75分.解寫出文字說明、證明過程或演算步驟.
-
19.設(shè)橢圓C:
=1(a>b>0)的左、右焦點分別為F1、F2,離心率e=x2a2+y2b2,長軸為4,且過橢圓右焦點F2的直線l與橢圓C交于M、N兩點.12
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若=-2,其中O為坐標(biāo)原點,求直線l的斜率;OM?ON
(Ⅲ)若AB是橢圓C經(jīng)過原點O的弦,且MN∥AB,判斷是否為定值?若是定值,請求出,若不是定值,請說明理由.|AB|2|MN|組卷:725引用:4難度:0.6 -
20.已知函數(shù)f(x)=
-k.lnxx
(Ⅰ)當(dāng)k=0時,求曲線y=f(x)在點(e,f(e))處的切線方程;
(Ⅱ)若f(x)≤0恒成立,求實數(shù)k的取值范圍;
(Ⅲ)證明:ln.12+ln13+…+ln1n<1e(12+13+…+1n)(n>1,n∈N*)組卷:526引用:2難度:0.5