北師大版必修5高考題同步試卷:1.3 等比數(shù)列(02)
發(fā)布:2024/12/5 17:0:3
一、選擇題(共6小題)
-
1.若a,b是函數(shù)f(x)=x2-px+q(p>0,q>0)的兩個不同的零點,且a,b,-2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q的值等于( ?。?/h2>
組卷:3983引用:72難度:0.5 -
2.等比數(shù)列x,3x+3,6x+6,…的第四項等于( ?。?/h2>
組卷:2359引用:60難度:0.9 -
3.設a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比數(shù)列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an)2,則( ?。?/h2>
組卷:1973引用:23難度:0.7 -
4.已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1?am(n-1)+2?…?am(n-1)+m,(m,n∈N*),則以下結論一定正確的是( )
組卷:1906引用:29難度:0.5 -
5.對任意等比數(shù)列{an},下列說法一定正確的是( ?。?/h2>
組卷:2985引用:52難度:0.9
三、解答題(共4小題)
-
16.設a1,a2,a3.a(chǎn)4是各項為正數(shù)且公差為d(d≠0)的等差數(shù)列.
(1)證明:,2a1,2a2,2a3依次構成等比數(shù)列;2a4
(2)是否存在a1,d,使得a1,a22,a33,a44依次構成等比數(shù)列?并說明理由;
(3)是否存在a1,d及正整數(shù)n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次構成等比數(shù)列?并說明理由.組卷:2381引用:21難度:0.5 -
17.設{an}是首項為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項和.記bn=
,n∈N*,其中c為實數(shù).nSnn2+c
(1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.組卷:1892引用:23難度:0.5