大綱版高三(上)高考題同步試卷:1.3 總體期望值和方差的估計(01)
發(fā)布:2024/11/11 13:30:1
一、選擇題(共7小題)
-
1.有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計,大于或等于31.5的數(shù)據(jù)約占( ?。?/h2>組卷:522引用:25難度:0.9 -
2.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:糧倉開倉收糧,有人送來米1534石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為( )
組卷:3012引用:80難度:0.9 -
3.在“世界讀書日”前夕,為了了解某地5000名居民某天的閱讀時間,從中抽取了200名居民的閱讀時間進(jìn)行統(tǒng)計分析,在這個問題中,5000名居民的閱讀時間的全體是( )
組卷:1639引用:37難度:0.9 -
4.某班級有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗(yàn)中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是( ?。?/h2>
組卷:836引用:50難度:0.9 -
5.若樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的標(biāo)準(zhǔn)差為( ?。?/h2>
組卷:4886引用:50難度:0.7 -
6.設(shè)樣本數(shù)據(jù)x1,x2,…,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )
組卷:1949引用:53難度:0.9 -
7.某公司10位員工的月工資(單位:元)為x1,x2,…,x10,其均值和方差分別為
和s2,若從下月起每位員工的月工資增加100元,則這10位員工下月工資的均值和方差分別為( ?。?/h2>x組卷:2242引用:82難度:0.9
二、填空題(共6小題)
-
8.已知一組數(shù)據(jù)4,6,5,8,7,6,那么這組數(shù)據(jù)的平均數(shù)為 .
組卷:839引用:27難度:0.9 -
9.已知隨機(jī)變量X服從二項分布B(n,p),若E(X)=30,D(X)=20,則p=.
組卷:2445引用:26難度:0.7 -
10.某學(xué)校高一年級男生人數(shù)占該年級學(xué)生人數(shù)的40%,在一次考試中,男,女平均分?jǐn)?shù)分別為75、80,則這次考試該年級學(xué)生平均分?jǐn)?shù)為.
組卷:634引用:33難度:0.7
三、解答題(共17小題)
-
29.某市A、B兩所中學(xué)的學(xué)生組隊參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊.
(Ⅰ)求A中學(xué)至少有1名學(xué)生入選代表隊的概率;
(Ⅱ)某場比賽前,從代表隊的6名隊員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望.組卷:3980引用:19難度:0.3 -
30.若n是一個三位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).在某次數(shù)學(xué)趣味活動中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個數(shù),且只能抽取一次,得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個數(shù)字之積不能被5整除,參加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)寫出所有個位數(shù)字是5的“三位遞增數(shù)”;
(Ⅱ)若甲參加活動,求甲得分X的分布列和數(shù)學(xué)期望EX.組卷:2871引用:7難度:0.1