2022-2023學(xué)年廣東省實(shí)驗(yàn)中學(xué)附屬江門學(xué)校高二(上)開學(xué)數(shù)學(xué)試卷
發(fā)布:2024/6/1 8:0:9
一、單選題(本大題共8小題,共40.0分。在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))
-
1.已知向量
=(2,3),a=(3,2),則|b-a|=( ?。?/h2>b組卷:7903引用:44難度:0.8 -
2.設(shè)
為平面內(nèi)一個(gè)基底,已知向量e1,e2,AB=e1-ke2,CB=4e1-2e2,若A,B,D三點(diǎn)共線,則k的值是( ?。?/h2>CD=3e1-3e2組卷:204引用:6難度:0.6 -
3.在△ABC中,AD為BC邊上的中線,E為AD的中點(diǎn),則
=( ?。?/h2>EB組卷:16872引用:153難度:0.9 -
4.南水北調(diào)工程緩解了北方一些地區(qū)水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔148.5m時(shí),相應(yīng)水面的面積為140.0km2;水位為海拔157.5m時(shí),相應(yīng)水面的面積為180.0km2.將該水庫在這兩個(gè)水位間的形狀看作一個(gè)棱臺,則該水庫水位從海拔148.5m上升到157.5m時(shí),增加的水量約為(
≈2.65)( )7組卷:3606引用:20難度:0.7 -
5.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的是( ?。?/h2>
組卷:1447引用:162難度:0.9 -
6.如圖,三棱錐A-BCD中,AB⊥底面BCD,BC⊥CD,且AB=BC=1,CD=2,點(diǎn)E為CD的中點(diǎn),則AE的長為( ?。?/h2>
組卷:195引用:5難度:0.7 -
7.劉徽(約公元225年-295年),魏晉時(shí)期偉大的數(shù)學(xué)家,中國古代數(shù)學(xué)理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的重要闡釋.割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形,當(dāng)n變得很大時(shí),這些等腰三角形的面積之和近似等于圓的面積.運(yùn)用割圓術(shù)的思想,得到sin1°的近似值為( )
組卷:208引用:4難度:0.7
四、解答題(本大題共6小題,其中18題10分,其余每題12分,共70.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
-
21.如圖,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
(1)證明:MN∥平面C1DE;
(2)求點(diǎn)C到平面C1DE的距離.組卷:7472引用:33難度:0.4 -
22.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PAD是正三角形,側(cè)面PAD⊥底面ABCD,M是PD的中點(diǎn).
(1)求證:AM⊥平面PCD;
(2)求側(cè)面PBC與底面ABCD所成二面角的余弦值.組卷:918引用:16難度:0.5