2022-2023學年廣西柳州高級中學、南寧二中高三(上)聯(lián)考數學試卷(文科)(9月份)
發(fā)布:2024/4/20 14:35:0
一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知集合A={x|-2≤x≤1},集合B={x|log2x<1},則A∩B=( ?。?/h2>
組卷:40難度:0.8 -
2.設i為虛數單位,若復數z滿足
,其中z1-i=i為復數z的共軛復數,則|z|=( ?。?/h2>z組卷:208引用:3難度:0.9 -
3.阿基米德不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的焦點在x軸上,且橢圓C的離心率為
,面積為23.則橢圓C的標準方程為( ?。?/h2>125π組卷:142難度:0.7 -
4.已知函數
,則( ?。?/h2>f(x)=2|x|,a=f(log0.53),b=f(log43),c=f(cosπ3)組卷:61難度:0.7 -
5.已知
,且α∈(π2,3π4),則cos2α=( ?。?/h2>sinα+cosα=12組卷:452難度:0.7 -
6.已知f(x)是R上的奇函數,且f(2-x)=f(x),f(1)=3,則f(2022)+f(2023)=( ?。?/h2>
組卷:978引用:3難度:0.6 -
7.在△ABC中,cosC=-
,BC=1,AB=435,則AC=( ?。?/h2>2組卷:386引用:3難度:0.8
[選修4-4:坐標系與參數方程]
-
22.在平面直角坐標系xOy中,直線C1的參數方程為
(t為參數,0<α<π),曲線C2的參數方程為x=-2+tcosαy=tsinα(φ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.x=-1+3cosφy=1+3sinφ
(1)求曲線C2的極坐標方程;
(2)設曲線C1與曲線C2的交點分別為A,B,M(-2,0),求|MA|2+|MB|2的最大值及此時直線C1的傾斜角.組卷:137引用:3難度:0.6
[選修4-5:不等式選講]
-
23.已知a,b,c∈R.
(1)若a>b>c,求證:;1a-b+1b-c+1c-a>0
(2)若a2+b2+c2=1,求ab+bc+ca的最小值.組卷:37難度:0.7