2021-2022學(xué)年陜西省西安市蓮湖區(qū)高一(下)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的)
-
1.若角2α與240°角的終邊相同,則α等于( ?。?/h2>
組卷:453引用:1難度:0.9 -
2.下列命題正確的是( ?。?/h2>
組卷:669引用:2難度:0.9 -
3.sin40°sin50°-cos40°cos50°等于( ?。?/h2>
組卷:422引用:2難度:0.8 -
4.設(shè)
=AB,a=AD,b=BC,則c等于( ?。?/h2>DC組卷:128引用:2難度:0.9 -
5.要得到函數(shù)
的圖象,只需將函數(shù)y=2cos2x的圖象( ?。?/h2>y=2sin(2x+π4)組卷:263引用:3難度:0.8 -
6.已知α為任意角,若滿足
,則tan(π6+α)=2=( ?。?/h2>tan(2α+4π3)組卷:144引用:2難度:0.7 -
7.下列函數(shù)中,最小正周期為π,且為偶函數(shù)的為( ?。?/h2>
組卷:164引用:4難度:0.7
三、解答題(本大題共6小題,共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟)
-
21.已知函數(shù)f(x)=sin2x+
sinxcosx+cos2x-3.12
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)填寫下面表格,并用“五點法”畫出f(x)在一個周期內(nèi)的圖像.組卷:74引用:1難度:0.5 -
22.某游樂場的摩天輪示意圖如圖.已知該摩天輪的半徑為30米,輪上最低點與地面的距離為2米,沿逆時針方向勻速旋轉(zhuǎn),旋轉(zhuǎn)一周所需時間為T=24分鐘.在圓周上均勻分布12個座艙,標(biāo)號分別為1~12(可視為點),在旋轉(zhuǎn)過程中,座艙與地面的距離h與時間t的函數(shù)關(guān)系基本符合正弦函數(shù)模型,現(xiàn)從圖示位置,即1號座艙位于圓周最右端時開始計時,旋轉(zhuǎn)時間為t分鐘.
(Ⅰ)求座艙與地面的距離h與時間t的函數(shù)關(guān)系h(t)的解析式;
(Ⅱ)在前24分鐘內(nèi),求1號座艙與地面的距離為17米時t的值;
(Ⅲ)記1號座艙與5號座艙高度之差的絕對值為H米,求當(dāng)H取得最大值時t的值.組卷:95引用:7難度:0.5