2023-2024學(xué)年陜西省西安市鐵一中學(xué)高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/17 16:0:2
一、單項(xiàng)選擇題.本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求.
-
1.已知
,則tanα的值為( ?。?/h2>sinα=13,α∈(π2,π)組卷:1271引用:8難度:0.8 -
2.已知a>0,b>0且2ab=a+2b,則a+8b的最小值為( ?。?/h2>
組卷:97引用:2難度:0.7 -
3.函數(shù)f(x)=sinx?ln|x|的部分圖象大致為( ?。?/h2>
組卷:351引用:11難度:0.9 -
4.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=
,則下列結(jié)論中錯(cuò)誤的是( ?。?/h2>22組卷:393引用:8難度:0.7 -
5.宋代制酒業(yè)很發(fā)達(dá),為了存儲(chǔ)方便,酒缸是要一層一層堆起來(lái)的,形成堆垛,用簡(jiǎn)便的方法算出堆垛中酒缸的總數(shù),古代稱(chēng)之為堆垛術(shù).有這么一道關(guān)于“堆垛”求和的問(wèn)題:將半徑相等的圓球堆成一個(gè)三角垛,底層是每邊為n個(gè)圓球的三角形,向上逐層每邊減少一個(gè)圓球,頂層為一個(gè)圓球,記自上而下第n層的圓球總數(shù)為an,容易發(fā)現(xiàn):a1=1,a2=3,a3=6,則a10-a5=( ?。?/h2>
組卷:57引用:4難度:0.7 -
6.已知焦點(diǎn)為F1,F(xiàn)2的雙曲線C的離心率為
,點(diǎn)P為C上一點(diǎn),且滿足2|PF1|=3|PF2|,若△PF1F2的面積為5,則雙曲線C的實(shí)軸長(zhǎng)為( ?。?/h2>25組卷:312引用:4難度:0.5 -
7.已知△ABC的三個(gè)頂點(diǎn)都在拋物線x2=6y上,且F為拋物線的焦點(diǎn),若
,則AF=13(AB+AC)=( )|AF|+|BF|+|CF|組卷:77引用:2難度:0.6
四、解答題:本題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
-
21.已知數(shù)列{an}滿足a1=2,
.an+1=2-1an(n∈N*)
(1)設(shè),求證:數(shù)列{bn}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;bn=1an-1
(2)設(shè),數(shù)列{cncn+2}的前n項(xiàng)和為T(mén)n,是否存在正整數(shù)m,使得cn=2ann+1對(duì)任意的n∈N*都成立?若存在,求出m的最小值;若不存在,試說(shuō)明理由.Tn<1cmcm+1組卷:204引用:5難度:0.4 -
22.已知橢圓C:
=1(a>b>0)的長(zhǎng)軸長(zhǎng)為8,以橢圓的左焦點(diǎn)為圓心,短半軸長(zhǎng)為半徑的圓與直線h:y=x2a2+y2b2(x-4)直線相切.22
(1)求橢圓的方程C;
(2)已知直線l:x=8,過(guò)右焦點(diǎn)F的直線(不與軸重合)與橢圓C交于A,B兩點(diǎn),過(guò)點(diǎn)A作AD⊥l,垂足為D.
①求證:直線BD過(guò)定點(diǎn)E,并求出定點(diǎn)E的坐標(biāo);
②點(diǎn)O為坐標(biāo)原點(diǎn),求△OBD面積的最大值.組卷:145引用:4難度:0.6