試卷征集
加入會(huì)員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2021-2022學(xué)年新疆喀什地區(qū)巴楚一中高二(下)期末數(shù)學(xué)試卷(理科)

發(fā)布:2024/4/20 14:35:0

一、單選題(每小題6分,共60分)

  • 1.i是虛數(shù)單位,復(fù)數(shù)(1+2i)z=-1+3i,則|z|=( ?。?/h2>

    組卷:47引用:5難度:0.7
  • 2.已知
    a
    0
    xdx=2(a>0),則a的值為( ?。?/h2>

    組卷:29引用:5難度:0.9
  • 3.點(diǎn)P的直角坐標(biāo)為(-
    2
    ,
    2
    ),那么它的極坐標(biāo)可表示為( ?。?/h2>

    組卷:188引用:5難度:0.9
  • 4.變量x,y具有較強(qiáng)的線性相關(guān)性,且x,y的數(shù)據(jù)如表所示,若變量x,y的回歸直線方程是
    ?
    y
    =
    -
    3
    .
    1
    x
    +
    ?
    a
    ,則
    ?
    a
    的值是( ?。?br />
    x 16 12 8 4
    y 24 34 38 64

    組卷:95引用:3難度:0.8
  • 5.已知隨機(jī)變量X服從正態(tài)分布N(3,σ2),且P(X>5)=0.2,則P(1<X<3)=( ?。?/h2>

    組卷:235引用:3難度:0.8
  • 6.(2-x)(1+x)5的展開(kāi)式中含x2的項(xiàng)的系數(shù)為( ?。?/h2>

    組卷:107引用:2難度:0.8

三、解答題(解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)

  • 17.為了預(yù)防新型冠狀病毒疫?。成镆呙缪芯克泳o對(duì)疫苗進(jìn)行研究,將某一型號(hào)的疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
    未感染病毒 感染病毒 總計(jì)
    未注射疫苗 20 x m
    注射疫苗 30 y n
    總計(jì) 50 50 100
    現(xiàn)從所有感染病毒的小白鼠中隨機(jī)抽取一只,抽到“注射疫苗”小白鼠的概率為
    1
    5

    (1)完成如表的2×2列聯(lián)表:
    未感染病毒 感染病毒 總計(jì)
    未注射疫苗 20
    注射疫苗 30
    總計(jì) 50 50 100
    (2)能否有99%把握認(rèn)為注射此種疫苗對(duì)預(yù)防新型冠狀病毒有效?
    已知:K2=
    n
    ad
    -
    bc
    2
    a
    +
    b
    a
    +
    c
    c
    +
    d
    b
    +
    d
    ,n=a+b+c+d.
    P(K2≥K0 0.05 0.01 0.005
    K0 3.841 6.635 7.879

    組卷:17引用:4難度:0.7
  • 18.在平面直角坐標(biāo)系xOy中,已知直線C1的方程為:
    x
    =
    1
    2
    t
    y
    =
    1
    +
    3
    2
    t
    (t為參數(shù)),以坐標(biāo)原為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為4ρcos2θ-sinθ=0.
    (1)將直線C1的方程化為普通方程,曲線C2的方程化為直角坐標(biāo)方程;
    (2)若直線C1交曲線C2于A,B兩點(diǎn),求|AB|.

    組卷:22引用:2難度:0.5
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正