2022年安徽省蚌埠市高考數(shù)學(xué)第四次質(zhì)檢試卷(理科)
發(fā)布:2024/4/20 14:35:0
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
-
1.已知集合E,F(xiàn)都是R的子集,且?RE?F,則E∪(?RF)=( ?。?/h2>
組卷:30引用:1難度:0.8 -
2.已知i為虛數(shù)單位,復(fù)數(shù)z=-i,則下列復(fù)數(shù)與z互為共軛復(fù)數(shù)的是( ?。?/h2>
組卷:16引用:2難度:0.8 -
3.已知點(diǎn)P是△ABC的重心,則下列結(jié)論正確的是( )
組卷:119引用:1難度:0.8 -
4.設(shè)m,n是不同的直線,α,β是不同的平面,則下列命題正確的是( ?。?/h2>
組卷:68引用:2難度:0.6 -
5.已知點(diǎn)O是原點(diǎn),點(diǎn)F是雙曲線C:
的右焦點(diǎn),過雙曲線C的右頂點(diǎn)且垂直于x軸的直線與雙曲線C的一條漸近線相交于點(diǎn)A,若|FO|=|FA|,則雙曲線C的漸近線為( )x2a2-y2b2=1(a>0,b>0)組卷:70引用:2難度:0.7 -
6.已知a=log310,b=lg27,
,則a,b,c的大小順序?yàn)椋ā 。?/h2>c=3組卷:145引用:3難度:0.6 -
7.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,某數(shù)學(xué)興趣小組探究該類三角形時(shí),初步提出以下四個(gè)論斷:
甲:b>c;
乙:tan(B-C)>0;
丙:cosB<sinC;
?。篶cosB<bcosC.
若上述四個(gè)論斷中有且只有一個(gè)是正確的,則正確的是( ?。?/h2>組卷:50引用:1難度:0.6
(二)選考題:共10分。請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。[選修4-4:坐標(biāo)系與參數(shù)方程]
-
22.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(t為參數(shù)),曲線C與直線x=3相交于M,N兩點(diǎn).x=t+2ty=35t3-185t
(1)求△OMN的面積;
(2)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求△OMN外接圓的極坐標(biāo)方程.組卷:84引用:4難度:0.5
[選修4-5:不等式選講](10分)
-
23.已知函數(shù)f(x)=|3x-2|.
(I)若不等式的解集為f(x+23)≥|t-1|,求實(shí)數(shù)t的值;(-∞,-13]∪[13,+∞)
(Ⅱ)若不等式f(x)≤|3x+1|+3y+m?3-y對(duì)任意x,y恒成立,求實(shí)數(shù)m的取值范圍.組卷:68引用:4難度:0.3