2023年湖南省益陽市安化第五高級中學等校聯(lián)考高考數(shù)學模擬試卷
發(fā)布:2024/4/28 8:51:19
一、單選題(共40分)
-
1.已知集合U={-1,0,1,2,3},集合P={0,1,2},集合Q={-1,0},則(?UP)∪Q=( )
組卷:118引用:4難度:0.9 -
2.設0<a<1,則“l(fā)ogab>1”是“b<a”的( ?。?/h2>
組卷:130引用:4難度:0.8 -
3.若
=cos(π+α),則tan(cos2αcosα+sinα-2α)=( ?。?/h2>π4組卷:216引用:4難度:0.7 -
4.已知{an}是等比數(shù)列,a2=2,a5=
,則a1a2+a2a3+…+anan+1=( ?。?/h2>14組卷:1234引用:27難度:0.9 -
5.在四邊形ABCD中,若
,且AB=-CD,則四邊形ABCD為( )|AB-AD|=|AB+AD|組卷:425引用:2難度:0.7 -
6.我國古代《九章算術(shù)》里,記載了一個“商功”的例子:今有芻童,下廣二丈,袤三丈,上廣三丈,袤四丈,高三丈.問積幾何?其意思是:今有上下底面皆為長方形的草垛(如圖所示),下底寬2丈,長3丈;上底寬3丈,長4丈;高3丈.問它的體積是多少?該書提供的算法是:上底長的2倍與下底長的和與上底寬相乘,同樣下底長的2倍與上底長的和與下底寬相乘,將兩次運算結(jié)果相加,再乘以高,最后除以6.則這個問題中的芻童的體積為( ?。?/h2>
組卷:134引用:8難度:0.8 -
7.過雙曲線
(a>b>0)的右焦點F2的直線在第一、第四象限交兩漸近線分別于P,Q兩點,且∠OPQ=90°,O為坐標原點,若△OPQ內(nèi)切圓的半徑為x2a2-y2b2=1,則該雙曲線的離心率為( )a3組卷:367引用:5難度:0.5
四、解答題(共70分)
-
21.已知函數(shù)f(x)=xlnx-ax2.
(Ⅰ)若f(x)的圖像恒在x軸下方,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個零點m、n,且,求mn的最大值.1<mn≤2組卷:97引用:3難度:0.3 -
22.過雙曲線Γ:
=1(a>0,b>0)左焦點F1的動直線l與Γ的左支交于A,B兩點,設Γ的右焦點為F2.x2a2-y2b2
(1)若三角形ABF2可以是邊長為4的正三角形,求此時Γ的標準方程;
(2)若存在直線l,使得AF2⊥BF2,求Γ離心率的取值范圍.組卷:172引用:3難度:0.5