2022-2023學(xué)年新疆實(shí)驗(yàn)中學(xué)高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/12/18 5:30:2
一、單選題:本大題共8題,每小題5分,共計(jì)40分.在每小題列出的四個(gè)選項(xiàng)中只有一項(xiàng)是符合題目要求的.
-
1.若直線l的方向向量
,平面α的一個(gè)法向量a=(1,2,-1),若l⊥α,則實(shí)數(shù)k=( ?。?/h2>m=(-2,-4,k)組卷:539引用:10難度:0.8 -
2.圓x2+y2-2x+6y-6=0的圓心和半徑分別是( ?。?/h2>
組卷:163引用:1難度:0.8 -
3.方程(2x+3y-1)(
-1)=0表示的曲線是( )x-3組卷:1278引用:17難度:0.7 -
4.已知直線x-2y+4=0經(jīng)過橢圓
=1(a>b>0)的頂點(diǎn)和焦點(diǎn),則橢圓的標(biāo)準(zhǔn)方程為( )x2a2+y2b2組卷:91引用:3難度:0.7 -
5.已知F1、F2為雙曲線C:x2-y2=2的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( ?。?/h2>
組卷:2746引用:69難度:0.7 -
6.在直三棱柱ABC-A1B1C1中,∠BCA=90°,D,F(xiàn)分別是A1B1,A1C1的中點(diǎn),BC=CA=CC1,則BD與AF所成角的正弦值是( )
組卷:30引用:1難度:0.6 -
7.已知點(diǎn)F是拋物線C:y2=4x的焦點(diǎn),過焦點(diǎn)F的直線l交拋物線C于不同的兩點(diǎn)P,Q,設(shè)
,點(diǎn)M為PQ的中點(diǎn),則M到y(tǒng)軸的距離為( )PF=3FQ組卷:178引用:1難度:0.6
四、解答題:本大題共6題,共計(jì)70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
-
21.在直角梯形CEPD中,PD∥EC,PD=8,CE=6,A為線段PD的中點(diǎn),四邊形ABCD為正方形.將四邊形PABE沿AB折疊,使得PA⊥AD,得到如圖(2)所示的幾何體.
(1)求直線PD與平面PCE所成角的正弦值;
(2)當(dāng)F為線段AB的中點(diǎn)時(shí),求二面角P-CE-F的余弦值.組卷:66引用:2難度:0.6 -
22.已知橢圓C:
=1(a>b>0),其右焦點(diǎn)為F(x2a2+y2b2,0),點(diǎn)M在圓x2+y2=b2上但不在y軸上,過點(diǎn)M作圓的切線交橢圓于P,Q兩點(diǎn),當(dāng)點(diǎn)M在x軸上時(shí),|PQ|=3.3
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)M在圓上運(yùn)動(dòng)時(shí),試探究△FPQ周長(zhǎng)的取值范圍.組卷:251引用:4難度:0.5