2022-2023學(xué)年新疆烏魯木齊101中高二(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(12題每題5分共60分)
-
1.設(shè)F1、F2分別為雙曲線(xiàn)
的左、右焦點(diǎn),若在雙曲線(xiàn)右支上存在點(diǎn)P,滿(mǎn)足|PF2|=|F1F2|,且F2到直線(xiàn)PF1的距離等于雙曲線(xiàn)的實(shí)軸長(zhǎng),則該雙曲線(xiàn)的離心率e為( ?。?/h2>x2a2-y2b2=1(a>0,b>0)組卷:1045引用:31難度:0.7 -
2.已知F是橢圓
的左焦點(diǎn),P為橢圓C上任意一點(diǎn),點(diǎn)Q坐標(biāo)為(1,1),則|PQ|+|PF|的最大值為( ?。?/h2>C:x24+y23=1組卷:616引用:9難度:0.7 -
3.如圖,在斜棱柱ABCD-A1B1C1D1中,AC與BD的交點(diǎn)為點(diǎn)M,
,AB=a,AD=b,則AA1=c=( ?。?/h2>MC1組卷:1427引用:24難度:0.8 -
4.已知邊長(zhǎng)為2的等邊三角形ABC,D是平面ABC內(nèi)一點(diǎn),且滿(mǎn)足DB:DC=2:1,則三角形ABD面積的最小值是( ?。?/h2>
組卷:100引用:6難度:0.5 -
5.在正方體ABCD-A1B1C1D1中,P為B1D1的中點(diǎn),則直線(xiàn)PB與AD1所成的角為( ?。?/h2>
組卷:4748引用:39難度:0.7 -
6.已知x,y∈R,向量
,a=(x,1,1),b=(1,y,1),且c=(3,-6,3),a⊥c,則b∥c=( )|a+b|組卷:578引用:25難度:0.7 -
7.若圓x2+y2=1上總存在兩個(gè)點(diǎn)到點(diǎn)(a,1)的距離為2,則實(shí)數(shù)a的取值范圍是( ?。?/h2>
組卷:412引用:12難度:0.6
三、解答題(共65分)
-
20.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=
AD=1.E為棱AD的中點(diǎn),異面直線(xiàn)PA與CD所成的角為90°.12
(1)在平面PAB內(nèi)是否存在一點(diǎn)M,使得直線(xiàn)CM∥平面PBE,如果存在,請(qǐng)確定點(diǎn)M的位置,如果不存在,請(qǐng)說(shuō)明理由;
(2)若二面角P-CD-A的大小為45°,求P到直線(xiàn)CE的距離.組卷:219引用:6難度:0.6 -
21.某校積極開(kāi)展社團(tuán)活動(dòng),在一次社團(tuán)活動(dòng)過(guò)程中,一個(gè)數(shù)學(xué)興趣小組發(fā)現(xiàn)《九章算術(shù)》中提到了“芻甍”這個(gè)五面體,于是他們仿照該模型設(shè)計(jì)了一道數(shù)學(xué)探究題,如圖1,E、F、G分別是正方形的三邊AB、CD、AD的中點(diǎn),先沿著虛線(xiàn)段FG將等腰直角三角形FDG裁掉,再將剩下的五邊形ABCFG沿著線(xiàn)段EF折起,連接AB、CG就得到了一個(gè)“芻甍”(如圖2).
(1)若O是四邊形EBCF對(duì)角線(xiàn)的交點(diǎn),求證:AO∥平面GCF;
(2)若二面角A-EF-B的大小為,求直線(xiàn)AB與平面GCF所成角的正弦值.23π組卷:133引用:14難度:0.6