2022-2023學年山東省聊城一中高二(下)期中數(shù)學試卷
發(fā)布:2024/4/23 12:26:7
一、單選題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一個選項符合題目要求.
-
1.已知函數(shù)y=f(x)在x=x0處的導數(shù)f′(x0)=-1,則
=( ?。?/h2>Δx→0limf(x0+2Δx)-f(x0)Δx組卷:17引用:2難度:0.8 -
2.學校食堂的一個窗口共賣5種菜,甲、乙、丙3名同學每人從中選一種,假設每種菜足量,則不同的選法共有( ?。?/h2>
組卷:89引用:3難度:0.7 -
3.設某芯片制造廠有甲、乙兩條生產線均生產5nm規(guī)格的芯片,現(xiàn)有20塊該規(guī)格的芯片,其中甲、乙生產的芯片分別為12塊,8塊,且乙生產該芯片的次品率為
,現(xiàn)從這20塊芯片中任取一塊芯片,若取得芯片的次品率為0.08,則甲廠生產該芯片的次品率為( ?。?/h2>120組卷:59引用:7難度:0.7 -
4.若
的展開式中只有第6項的二項式系數(shù)最大,則該二項式的展開式中常數(shù)項為( ?。?/h2>(x-2x2)n組卷:413引用:7難度:0.8 -
5.函數(shù)f(x)=
的圖象大致為( ?。?/h2>ex-e-xx2組卷:1919引用:123難度:0.9 -
6.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( ?。?/h2>
組卷:658引用:9難度:0.5 -
7.在(1+x)+(1+x)2+(1+x)3+…+(1+x)9的展開式中,x3的系數(shù)為( ?。?/h2>
組卷:129引用:8難度:0.7
四、解答題:本題共7小題,共70分.解答應寫出文字說明、證明過程或演算步驟.
-
22.已知函數(shù)f(x)=lnx+
,a∈R.ax
(1)討論函數(shù)f(x)的單調性;
(2)當a>0時,證明:f(x)≥.2a-1a組卷:293引用:8難度:0.4 -
23.已知函數(shù)f(x)=(x-2)ex.
(1)求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)設g(x)=f(x)+lnx-x+2,記函數(shù)y=g(x)在(,1)上的最大值為g(a)(a∈R),證明:g(a)<-1.12組卷:79引用:4難度:0.5