2023年海南省??谑腥A僑中學(xué)高考數(shù)學(xué)模擬試卷(一)
發(fā)布:2024/12/15 2:30:7
一、選擇題:本題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.
=( )i(1+i)1-i組卷:54引用:2難度:0.9 -
2.已知集合A={0,1,2,3},B={y|y=2x-2x,x∈A},則A∩B=( )
組卷:95引用:3難度:0.8 -
3.已知向量
=(1,-2),a=(2,1),則b?(a-2a)=( ?。?/h2>b組卷:76引用:2難度:0.7 -
4.關(guān)于橢圓
,有以下四個命題.C:x2a2+y2b2=1(a>b>0)
甲:長軸長為10.
乙:短軸長為8.
丙:離心率為.45
丁:C上的點到其左焦點的距離的最大值為8.
若只有一個假命題,則該命題是( )組卷:34引用:1難度:0.7 -
5.燈籠起源于中國的西漢時期,兩千多年來,每逢春節(jié)人們便會掛起象征美好團(tuán)圓意義的紅燈籠,營造一種喜慶的氛圍.如圖1,某球形燈籠的輪廓由三部分組成,上下兩部分是兩個相同的圓柱的側(cè)面,中間是球面的一部分(除去兩個球冠).如圖2,球冠是由球面被一個平面截得的,垂直于截面的直徑被截得的部分叫做球冠的高,若球冠所在球的半徑為R.球冠的高為h,則球冠的面積S=2πRh.已知該燈籠的高為40cm,圓柱的高為4cm,圓柱的底面圓直徑為24cm,則圍成該燈籠所需布料的面積為( ?。?img alt="菁優(yōu)網(wǎng)" src="https://img.jyeoo.net/quiz/images/svg/202305/84/5a9b068f.png" style="vertical-align:middle" />
組卷:331引用:4難度:0.4 -
6.泊松分布是統(tǒng)計學(xué)里常見的離散型概率分布,由法國數(shù)學(xué)家泊松首次提出,泊松分布的概率分布列為P(X=k)=
e-λ(k=0,1,2,…),其中e為自然對數(shù)的底數(shù),λ是泊松分布的均值.已知某線路每個公交車站臺的乘客候車相互獨立,且每個站臺候車人數(shù)X服從參數(shù)為λ(λ>0)的泊松分布,若該線路某站臺的候車人數(shù)為2和3的概率相等,則該線路公交車兩個站臺各有1個乘客候車的概率為( )λkk!組卷:206引用:2難度:0.5 -
7.已知
,b=a=ln33,c=2e2,則( )ln77組卷:93引用:1難度:0.6
四、解答題:本題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟
-
21.已知函數(shù)f(x)=(x-a)lnx-1(a>0).
(1)若曲線y=f(x)在x=a處的切線方程為(a-1)x-y+b=0,求實數(shù)a,b的值;
(2)若a=2,關(guān)于x的方程f(x)=mx有兩個不同的實數(shù)解,求實數(shù)m的取值范圍.組卷:72引用:2難度:0.6 -
22.已知雙曲線
的右焦點為F(2,0),過點F的直線l與雙曲線C交于A,B兩點.當(dāng)l⊥x軸時,C:x2a2-y2b2=1(a>0,b>0).|AB|=233
(1)若A點坐標(biāo)為(x1,y1),B點坐標(biāo)為(x2,y2),證明:x1y2-x2y1=2(y2-y1).
(2)在x軸上是否存在定點M,使得|AM|2+|BM|2-|AB|2為定值?若存在,求出定點M的坐標(biāo)及這個定值;若不存在,請說明理由.組卷:86引用:1難度:0.4