2014-2015學(xué)年重慶市潼南縣高三(上)數(shù)學(xué)單元測試卷(文科)(10)
發(fā)布:2024/4/20 14:35:0
一、選擇題(本大題共10小題,每小題5分,共50分.)
-
1.在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是( ?。?/h2>
組卷:806引用:56難度:0.9 -
2.對某商店一個月內(nèi)每天的顧客人數(shù)進行了統(tǒng)計,得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)、眾數(shù)、極差分別是( ?。?/h2>
組卷:1055引用:79難度:0.9 -
3.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出S的值為( )
組卷:15引用:11難度:0.9 -
4.200輛汽車經(jīng)過某一雷達地區(qū),時速頻率分布直方圖如圖所示,則時速超過60km/h的汽車數(shù)量為( ?。?br />
組卷:57引用:22難度:0.9 -
5.在長為12cm的線段AB上任取一點C.現(xiàn)作一矩形,鄰邊長分別等于線段AC,CB的長,則該矩形面積大于20cm2的概率為( ?。?/h2>
組卷:905引用:39難度:0.9 -
6.袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取兩球,兩球顏色為一白一黑的概率等于( ?。?/h2>
組卷:1169引用:58難度:0.9 -
7.執(zhí)行如圖所示的程序框圖,若輸入n的值為6,則輸出s的值為( ?。?/h2>
組卷:1225引用:56難度:0.9
三、解答題(解答應(yīng)寫出文字說明、證明過程或演算步驟)
-
20.已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(a,b)是區(qū)域內(nèi)的隨機點,記A={y=f(x)有兩個零點,其中一個大于1,另一個小于1},求事件A發(fā)生的概率.x+y-8≤0x>0y>0組卷:452引用:15難度:0.5 -
21.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 12月1日 12月2日 12月3日 12月4日 12月5日 溫差x(℃) 10 11 13 12 8 發(fā)芽數(shù)y(顆) 23 25 30 26 16
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;?y=bx+a
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?組卷:547引用:48難度:0.5