試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年北京市海淀區(qū)八一學校高二(下)月考數(shù)學試卷(3月份)

發(fā)布:2024/7/11 8:0:9

一、選擇題共10小題,每小題5分,共50分.在每題列出的四個選項中,選出符合題目要求的一項.

  • 1.在等差數(shù)列{an}中,若a3=-1,公差d=2,則a7=( ?。?/h2>

    組卷:369引用:7難度:0.8
  • 2.已知數(shù)列{an}中,a1=2且滿足
    a
    n
    +
    1
    =
    1
    1
    -
    a
    n
    n
    N
    *
    ,則a12=(  )

    組卷:44引用:2難度:0.7
  • 3.設{an}是等比數(shù)列,且a1+a2+a3=1,a2+a3+a4=2,則a6+a7+a8=(  )

    組卷:9510引用:45難度:0.8
  • 4.已知等差數(shù)列{an}的前n項和為Sn,滿足a13=S13=13,則a1=( ?。?/h2>

    組卷:58引用:12難度:0.9
  • 5.已知等比數(shù)列{an}滿足a1=3,且4a1,2a2,a3成等差數(shù)列,則a3+a4+a5=( ?。?/h2>

    組卷:109引用:17難度:0.9
  • 6.已知Sn是數(shù)列{an}的前n項和,則“an>0”是“{Sn}是遞增數(shù)列”的( ?。?/h2>

    組卷:116引用:4難度:0.8

三、解答題(本大題共4小題,共45分。解答應寫出文字說明,證明過程或演算步驟)

  • 18.已知數(shù)列{an}的前n項和為Sn,且Sn=
    3
    2
    a
    n
    -
    1
    2
    n
    N
    *
    ,數(shù)列{bn}滿足:b1=a1,b2=3,bn+bn+2=2bn+1(n∈N*).
    (1)求數(shù)列{an},{bn}的通項公式;
    (2)若數(shù)列{cn},c1=a1,cn+1-cn=bn(n∈N*),求數(shù)列{cn}的通項公式;
    (3)若不等式
    k
    ?
    2
    3
    n
    ?
    a
    n
    +
    1
    -
    b
    n
    +6≥0對任意n∈N*恒成立,寫出一個符合條件的k的值.

    組卷:69引用:2難度:0.2
  • 19.已知數(shù)列{an}滿足:
    a
    1
    N
    *
    ,a1≤36,且
    a
    n
    +
    1
    =
    2
    a
    n
    ,
    a
    n
    18
    2
    a
    n
    -
    36
    ,
    a
    n
    18
    n
    =
    1
    ,
    2
    ,…
    .記集合
    M
    =
    {
    a
    n
    |
    n
    N
    *
    }

    (1)若a1=6,寫出集合M的所有元素;
    (2)若集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
    (3)求集合M的元素個數(shù)的最大值.

    組卷:89引用:4難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正