2023-2024學(xué)年浙江省杭州市蕭山區(qū)八年級(上)期中數(shù)學(xué)試卷
發(fā)布:2024/9/29 1:0:1
一、選擇題(共10小題,每小題3分,共30分)
-
1.如圖所示圖形中,為軸對稱的圖形的是( ?。?/h2>
組卷:9引用:1難度:0.9 -
2.已知三角形的三邊長分別為4,5,x,則x不可能是( )
組卷:850引用:89難度:0.9 -
3.在△ABC中,畫出邊AC上的高,畫法正確的是( ?。?/h2>
組卷:4216引用:39難度:0.9 -
4.對于命題“如果∠1與∠2互補(bǔ),那么∠1=∠2=90°”,能說明這個命題是假命題的反例是( ?。?/h2>
組卷:408引用:8難度:0.7 -
5.在△ABC中,線段AP,AQ,AR分別是BC邊上的高線,中線和角平分線,則( )
組卷:1075引用:9難度:0.8 -
6.根據(jù)下列已知條件,能畫出唯一的△ABC的是( ?。?/h2>
組卷:201引用:5難度:0.7 -
7.如圖,△ABC中,D為AB中點,E在AC上,且BE⊥AC.若DE=5,AE=8,EC=
,則BC的長度是( ?。?/h2>7組卷:146引用:2難度:0.6 -
8.如圖,Rt△ABC中,∠A=90°,AB=3,AC=4,現(xiàn)將△ABC沿BD進(jìn)行翻折,使點A剛好落在BC上,則CD的長為( ?。?/h2>
組卷:758引用:10難度:0.7
三、解答題(共8小題,66分,解答應(yīng)寫出文字說明或推理步驟)
-
23.如圖,在銳角△ABC中,點E是AB邊上一點,BE=CE,AD⊥BC于點D,AD與EC交于點G.
(1)求證:△AEG是等腰三角形.
(2)若BE=10,CD=3,G為CE中點,求AG的長.組卷:404引用:3難度:0.5 -
24.如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,點D為AC邊上的動點,點D從點C出發(fā),沿邊CA往A運動,當(dāng)運動到點A時停止,若設(shè)點D運動的時間為t秒,點D運動的速度為每秒1個單位長度.
(1)當(dāng)t=2時,分別求CD和AD的長;
(2)當(dāng)t為何值時,△CBD是直角三角形?
(3)若△CBD是等腰三角形,請直接寫出t的值.組卷:907引用:5難度:0.1