已知△ABC是等邊三角形,點D是射線CF上一點,連接BD交線段AC于點G.
(1)如圖1,當∠ADB=60°時,求證:DA平分∠BDF;
(2)如圖2,延長BA交射線CF于點F,當∠ACD=2∠ABD時,在AB上取一點H,且FH=FC,連接CH,求證:BH=AG;
(3)如圖3,在(2)的條件下,將△BCH沿CH翻折,得到△NHC,CH與BD交于點M,交于點K,若BM=8,MK=6,求HM的長.

【考點】三角形綜合題.
【答案】(1)證明見解析;
(2)證明見解析;
(3)2.
(2)證明見解析;
(3)2.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/17 18:0:2組卷:139引用:1難度:0.5
相似題
-
1.在等腰Rt△ABC中,∠ACB=90°,AC=BC,D為BC上一點,DE⊥AB于點E,連接AD,F(xiàn)為AD中點,連接CF并延長交AB于點G,連接EF.
(1)如圖1,當2GF=FC,GE=時,求Rt△ABC的面積.5
(2)如圖2,當BE=AG,判斷線段AG2,GE2,CD2之間的數(shù)量關系,并說明理由.43
(3)如圖3,在等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以AC為邊逆時針方向作∠CAR=30°,點M為AR上一點,以CM為邊向下構造等腰Rt△CNM,P為CN中點,當AP+CP和最小時,直接寫出的值.APCP發(fā)布:2025/6/21 21:0:1組卷:428引用:1難度:0.2 -
2.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點D是BC中點,點E是AC邊上一動點,連接DE,在DE左側(cè)作Rt△DEF,滿足∠DFE=90°,DF=EF,連接AF并延長,交BC于點G.
(1)如圖1,若AB=4,AE=1,求DE的長;
(2)如圖2,在點E的運動過程中,猜想AF與FG存在的數(shù)量關系,并證明你的結論;
(3)如圖3,在點E的運動過程中,將AF繞點F逆時針旋轉(zhuǎn)90°,得到A′F,連接A'B,A'D,若AB=4,請直接寫出當A'B+A′D取得最小值時,△A′DF的面積.55發(fā)布:2025/6/21 22:0:1組卷:254引用:2難度:0.5 -
3.已知:如圖①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.
(1)①求證:AC=BD;
②∠APB=;
(2)如圖②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,則AC與BD間的等量關系為,∠APB的大小為.發(fā)布:2025/6/22 0:30:2組卷:30引用:1難度:0.5