已知函數(shù)f(x)=12ax2-(2a+1)x+2lnx(a∈R).
(1)當(dāng)a=-1時,求f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)a∈R時,討論函數(shù)f(x)的單調(diào)性.
f
(
x
)
=
1
2
a
x
2
-
(
2
a
+
1
)
x
+
2
lnx
(
a
∈
R
)
【答案】(1)4x-2y-3=0;
(2)當(dāng)a≤0時,f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減;
當(dāng)a>時,f(x)在(0,),(2,+∞)上單調(diào)遞增,在(,2)上單調(diào)遞減;
a=時,f(x)在(0,+∞)上單調(diào)遞增,無遞減區(qū)間;
當(dāng)0<a<時,f(x)在(0,2),(,+∞)上單調(diào)遞增,在(2,)上單調(diào)遞減.
(2)當(dāng)a≤0時,f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減;
當(dāng)a>
1
2
1
a
1
a
a=
1
2
當(dāng)0<a<
1
2
1
a
1
a
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:17引用:1難度:0.6
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:237引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:144引用:2難度:0.2