定義:對(duì)于一個(gè)四邊形,我們把依次連結(jié)它的各邊中點(diǎn)得到的新四邊形叫做原四邊形的“中點(diǎn)四邊形”.如果原四邊形的中點(diǎn)四邊形是個(gè)正方形,我們把這個(gè)原四邊形叫做“中方四邊形”.
概念理解:下列四邊形中一定是“中方四邊形”的是 DD.
A.平行四邊形
B.矩形
C.菱形
D.正方形
性質(zhì)探究:如圖1,四邊形ABCD是“中方四邊形”,觀察圖形,寫(xiě)出關(guān)于四邊形ABCD的兩條結(jié)論:
①AC=BD①AC=BD;
②AC⊥BD②AC⊥BD.
問(wèn)題解決:如圖2,以銳角△ABC的兩邊AB,AC為邊長(zhǎng),分別向外側(cè)作正方形ABDE和正方形ACFG,連結(jié)BE,EG,GC.求證:四邊形BCGE是“中方四邊形”;
拓展應(yīng)用:如圖3,已知四邊形ABCD是“中方四邊形”,M,N分別是AB,CD的中點(diǎn),
(1)試探索AC與MN的數(shù)量關(guān)系,并說(shuō)明理由.
(2)若AC=2,求AB+CD的最小值.

【考點(diǎn)】四邊形綜合題.
【答案】D;①AC=BD;②AC⊥BD
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/5 8:0:9組卷:1096引用:6難度:0.3
相似題
-
1.已知:△ABC中,AB=AC,∠BAC=α,P是邊BC上一點(diǎn),逆時(shí)針把AP旋轉(zhuǎn)α角到AE(即AE=AP,∠PAE=∠BAC=α),作ED∥BC交直線AB于D.
(1)求證:四邊形PCDE是平行四邊形;
(2)若α=120°,AB=3.
①當(dāng)四邊形PCDE為菱形,試在圖2中畫(huà)出圖形,并求出CP的值;
②當(dāng)四邊形PCDE為矩形,如圖3,直接寫(xiě)出矩形PCDE面積的值 .發(fā)布:2025/6/15 9:30:1組卷:30引用:1難度:0.3 -
2.(1)如圖1,點(diǎn)P是?ABCD內(nèi)的一點(diǎn),分別過(guò)點(diǎn)B、C、D作AP的垂線BE、CF、DH,垂足分別為E、F、H,猜想BE、CF、DH三者之間的關(guān)系,并證明;
(2)如圖2,若點(diǎn)P在?ABCD的外部,△APB的面積為18,△APD的面積為3,求△APC的面積;
(3)如圖3,在(2)條件下,AB=BC,∠APC=∠ABC=90°,設(shè)AP、BP分別于CD相交于點(diǎn)M、N,=(請(qǐng)直接寫(xiě)出結(jié)論).CPPM發(fā)布:2025/6/15 11:0:2組卷:51引用:2難度:0.3 -
3.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直線交于點(diǎn)E,過(guò)點(diǎn)D作DF∥BE交BC所在直線于點(diǎn)F.
(1)如圖1,AB<AD,
①求證:四邊形BEDF是菱形;
②若AB=4,AD=8,求四邊形BEDF的面積;
(2)如圖2,若AB=8,AD=4,請(qǐng)按要求畫(huà)出圖形,并直接寫(xiě)出四邊形BEDF的面積.發(fā)布:2025/6/15 10:30:2組卷:163引用:2難度:0.3