試卷征集
加入會(huì)員
操作視頻

在求解一類代數(shù)問題時(shí),我們常常將二次三項(xiàng)式x2+bx+c化成(x+m)2+n的形式,并利用(x+m)2的非負(fù)性解決問題.請閱讀下列材料,并解決相關(guān)問題:
【例1】求代數(shù)式x2+4x+7的最小值.
解:x2+4x+7=x2+4x+4+3=(x+2)2+3.
因?yàn)椋▁+2)2≥0,所以(x+2)2+3≥3,即代數(shù)式x2+4x+7的最小值為3.
【例2】若m2-2mn+2n2-8n+16=0,求m、n的值.
解:因?yàn)閙2-2mn+2n2-8n+16=0,
所以(m2-2mn+n2)+(n2-8n+16)=0,
即(m-n)2+(n-4)2=0,
因?yàn)椋╩-n)2≥0,(n-4)2≥0,
所以
m
-
n
=
0
n
-
4
=
0
,
即m=n=4.
(1)求代數(shù)式x2+6x+10的最小值;
(2)在△ABC中,BC=a,AC=b,AB=c.
①若△ABC是等腰三角形,且滿足a2-8a+b2-14b+65=0,求△ABC的周長;
②若c-b=1,且c(b-25)+2a2-20a+219=0,求△ABC中最大邊上的高.

【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:441引用:3難度:0.5
相似題
  • 1.已知代數(shù)式-a2+2a-1,無論a取任何值,它的值一定是( ?。?/h2>

    發(fā)布:2024/12/12 8:0:1組卷:107引用:3難度:0.7
  • 2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為(  )

    發(fā)布:2024/12/16 14:30:3組卷:101引用:3難度:0.9
  • 3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于(  )

    發(fā)布:2024/12/23 12:30:2組卷:353引用:9難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正