試卷征集
加入會員
操作視頻

在求解一類代數(shù)問題時,我們常常將二次三項式x2+bx+c化成(x+m)2+n的形式,并利用(x+m)2的非負(fù)性解決問題.請閱讀下列材料,并解決相關(guān)問題:
【例1】求代數(shù)式x2+4x+7的最小值.
解:x2+4x+7=x2+4x+4+3=(x+2)2+3.
因?yàn)椋▁+2)2≥0,所以(x+2)2+3≥3,即代數(shù)式x2+4x+7的最小值為3.
【例2】若m2-2mn+2n2-8n+16=0,求m、n的值.
解:因?yàn)閙2-2mn+2n2-8n+16=0,
所以(m2-2mn+n2)+(n2-8n+16)=0,
即(m-n)2+(n-4)2=0,
因?yàn)椋╩-n)2≥0,(n-4)2≥0,
所以
m
-
n
=
0
n
-
4
=
0
,
即m=n=4.
(1)求代數(shù)式x2+6x+10的最小值;
(2)在△ABC中,BC=a,AC=b,AB=c.
①若△ABC是等腰三角形,且滿足a2-8a+b2-14b+65=0,求△ABC的周長;
②若c-b=1,且c(b-25)+2a2-20a+219=0,求△ABC中最大邊上的高.

【答案】(1)1;
(2)15或18;
(3)
60
13
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/29 20:0:1組卷:484引用:3難度:0.5
相似題
  • 1.將x2+6x+3配方成(x+m)2+n的形式,則m=
     

    發(fā)布:2025/6/24 5:30:3組卷:2251引用:50難度:0.9
  • 2.對于代數(shù)式:x2-2x+2,下列說法正確的是( ?。?/h2>

    發(fā)布:2025/6/25 7:30:2組卷:1044引用:8難度:0.7
  • 3.填空:x2-4x+3=(x-
     
    2-1.

    發(fā)布:2025/6/24 5:30:3組卷:1138引用:47難度:0.9
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正