當(dāng)前位置:
2022-2023學(xué)年山東省濟(jì)南市萊蕪區(qū)陳毅中學(xué)片區(qū)聯(lián)盟八年級(jí)(下)期中數(shù)學(xué)試卷(五四學(xué)制)>
試題詳情
【材料閱讀】
我們?cè)鉀Q過課本中的這樣一道題目:
如圖1,四邊形ABCD是正方形,E為BC邊上一點(diǎn),延長(zhǎng)BA至F,使AF=CE,連接DE,DF.……
提煉1:△ECD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△FAD;
提煉2:△ECD≌△FAD;
提煉3:旋轉(zhuǎn)、平移、軸對(duì)稱是圖形全等變換的三種方式.
【問題解決】
(1)如圖2,四邊形ABCD是正方形,E為BC邊上一點(diǎn),連接DE,將△CDE沿DE折疊,點(diǎn)C落在G處,EG交AB于點(diǎn)F,連接DF.
可得:∠EDF=4545°;AF,F(xiàn)E,EC三者間的數(shù)量關(guān)系是AF+EC=FEAF+EC=FE.
(2)如圖3,四邊形ABCD的面積為8,AB=AD,∠DAB=∠BCD=90°,連接AC.求AC的長(zhǎng)度.
(3)如圖4,在△ABC中,∠ACB=90°,CA=CB,點(diǎn)D,E在邊AB上,∠DCE=45°.寫出AD,DE,EB間的數(shù)量關(guān)系,并證明.

【考點(diǎn)】幾何變換綜合題.
【答案】45;AF+EC=FE
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1788引用:4難度:0.3
相似題
-
1.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點(diǎn)F,交BD于點(diǎn)E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點(diǎn)O,點(diǎn)G是△BCE內(nèi)一點(diǎn),∠CGE=90°,GE=3,將△CGE繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△CMH,E點(diǎn)對(duì)應(yīng)點(diǎn)為M,G點(diǎn)的對(duì)應(yīng)點(diǎn)為H,且點(diǎn)O,G,H在一條直線上直接寫出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
2.如圖,四邊形ABCD是矩形紙片,AB=2.對(duì)折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長(zhǎng)MN交BC于點(diǎn)G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是33.3
其中正確結(jié)論的序號(hào)是.發(fā)布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
3.在△ABC中,AB=AC,∠BAC=α,點(diǎn)P為線段CA延長(zhǎng)線上一動(dòng)點(diǎn),連接PB,將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,得到線段PD,連接DB,DC.
(1)如圖1,當(dāng)α=60°時(shí),
①求證:PA=DC;
②求∠DCP的度數(shù);
(2)如圖2,當(dāng)α=120°時(shí),請(qǐng)直接寫出PA和DC的數(shù)量關(guān)系.
(3)當(dāng)α=120°時(shí),若AB=6,BP=,請(qǐng)直接寫出點(diǎn)D到CP的距離為.31發(fā)布:2025/5/23 4:0:1組卷:4734引用:13難度:0.1