以[x]表示不超過x的最大整數(shù),設(shè)自然數(shù)n滿足
[115]+[215]+[315]+…+[n-115]+[n15]>2000,
則n的最小值是多少?
[
1
15
]
+
[
2
15
]
+
[
3
15
]
+
…
+
[
n
-
1
15
]
+
[
n
15
]
>
2000
【考點】高斯取整.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:286引用:3難度:0.1
相似題
-
1.50名同學(xué)面向老師站成一行,老師先讓大家從左至右按1、2、…、50依次報數(shù):然后讓報數(shù)是3的倍數(shù)的同學(xué)向后轉(zhuǎn),接看又讓報數(shù)是7的倍數(shù)的同學(xué)向后轉(zhuǎn),那么現(xiàn)在面向老師的同學(xué)還有名.
發(fā)布:2024/12/22 16:30:1組卷:69引用:2難度:0.5 -
2.已知A=1
+210100+310101+…+1010102,那么小于A的最大整數(shù)是.10109發(fā)布:2024/12/22 18:30:2組卷:78引用:1難度:0.5 -
3.設(shè)A=(
+1011+1112+1213+1314+1415)×5,試求A的整數(shù)部分。1516+1617+1718+1819+1920發(fā)布:2024/12/22 16:30:1組卷:36引用:1難度:0.3