當(dāng)前位置:
2022-2023學(xué)年陜西省西安市鐵一中學(xué)、濱河中學(xué)、鐵一陸港中學(xué)三校聯(lián)考九年級(jí)(上)期末數(shù)學(xué)試卷>
試題詳情
如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,并稱這兩個(gè)角的公共邊為底邊.
例如:若△ABC中,∠A=2∠B,則△ABC為以邊AB為底邊的倍角三角形.
問(wèn)題提出
(1)已知△ABC為倍角三角形,且∠ABC=2∠C.
①如圖1,若BD為△ABC的角平分線,則圖中相等的線段有 BD=CDBD=CD,圖中相似三角形有 △ABD∽△ACB△ABD∽△ACB;
②如圖2,若AC的中垂線交邊BC于點(diǎn)E,連接AE,則圖中等腰三角形有 △ACE和△ABE△ACE和△ABE.
問(wèn)題解決
(2)如圖3,現(xiàn)有一塊梯形板材ABCD,AD∥BC,∠A=90°,AB=48,BC=132,AD=68.工人師傅想用這塊板材裁出一個(gè)△BCP型部件,使得點(diǎn)P在梯形ABCD的邊上,且△BCP為以BC為底邊的倍角三角形.工人師傅在這塊板材上的作法如下:
①作BC的中垂線l交BC于點(diǎn)E;
②在BC上方的直線l上截取EF=33,連接CF并延長(zhǎng),交AD于點(diǎn)P;
③連接BP,得△BCP.
1)請(qǐng)問(wèn),若按上述作法,裁得的△BCP型部件是否符合要求?請(qǐng)證明你的想法.
2)是否存在其它滿足要求的△BCP?若存在,請(qǐng)畫(huà)出圖形并求出CP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【考點(diǎn)】相似形綜合題.
【答案】BD=CD;△ABD∽△ACB;△ACE和△ABE
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/9 5:0:8組卷:306引用:1難度:0.2
相似題
-
1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點(diǎn),P是腰AB上一動(dòng)點(diǎn),連接PE并延長(zhǎng),交射線CD于點(diǎn)M,作EF⊥PE,交下底BC于點(diǎn)F,連接MF交AD于點(diǎn)N,連接PF,AB=AD=4,BC=6,點(diǎn)A、P之間的距離為x,△PEF的面積為y.
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),求x的值;
(2)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)當(dāng)∠CMF=∠PFE時(shí),求△PEF的面積.發(fā)布:2025/1/28 8:0:2組卷:240引用:1難度:0.5 -
2.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點(diǎn),連接DE.則△CDE與△CAB的面積比為.
【探究】將圖①的△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)一定角度,使點(diǎn)E落在△ABC內(nèi)部,連接AD、BE,并延長(zhǎng)BE分別交AC、AD于點(diǎn)O、F,其它條件不變,如圖②.
(1)求證:△ACD∽△BCE.
(2)求證:AD⊥BF.
【應(yīng)用】將圖②的△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D恰好落在邊BC的延長(zhǎng)線上,連接AD、BE,BE的延長(zhǎng)線交AD于點(diǎn)F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長(zhǎng)為.發(fā)布:2025/1/28 8:0:2組卷:300引用:1難度:0.1 -
3.【閱讀】“關(guān)聯(lián)”是解決數(shù)學(xué)問(wèn)題的重要思維方式,角平分線的有關(guān)聯(lián)想就有很多……
(1)【問(wèn)題提出】如圖①,PC是△PAB的角平分線,求證.PAPB=ACBC小明思路:關(guān)聯(lián)“平行線、等腰三角形”,過(guò)點(diǎn)B作BD∥PA,交PC的延長(zhǎng)線于點(diǎn)D,利用“三角形相似”.
小紅思路:關(guān)聯(lián)“角平分線上的點(diǎn)到角的兩邊的距離相等”,過(guò)點(diǎn)C分別作CD⊥PA交PA于點(diǎn)D,作CE⊥PB交PB于點(diǎn)E,利用“等面積法”.
(2)【理解應(yīng)用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點(diǎn)D,則BD長(zhǎng)度為 ;
(3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點(diǎn),連接AD,將△ACD沿AD所在直線折疊點(diǎn)C恰好落在邊AB上的E點(diǎn)處.若AC=1,AB=2,則DE的長(zhǎng)為 ;
(4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線,AD的垂直平分線EF交BC延長(zhǎng)線于F,連接AF,當(dāng)BD=3時(shí),AF的長(zhǎng)為 .發(fā)布:2025/1/28 8:0:2組卷:312引用:1難度:0.1