已知函數(shù)f(x)=x2-2alnx,其中a∈R.
(1)當a=1時,求函數(shù)f(x)在[1e,e]上的最值;
(2)(?。┯懻摵瘮?shù)f(x)的單調(diào)性;
(ⅱ)若函數(shù)f(x)有兩個零點,求a的取值范圍.
[
1
e
,
e
]
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:154引用:4難度:0.3
相似題
-
1.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數(shù)a的取值范圍是( ?。?/h2>≥f(lnx)?lnxaxA. (0,1e]B. [1e,+∞)C.(0,e] D. (1e,+∞)發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
2.已知函數(shù)
,當x∈(0,+∞)時,f(x)≥0恒成立,則實數(shù)a的取值范圍是( )f(x)=e2x-2lnx+ax+1x2A.(-∞,1] B.(-∞,e2-1] C.(-∞,e] D.(-∞,2] 發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( )2aeA.[ ,e2]12eB.[ ,e2]1e2C.[ ,e4]1e2D.[ ,e4]1e發(fā)布:2024/12/20 6:0:1組卷:261引用:9難度:0.4
把好題分享給你的好友吧~~