已知拋物線y=ax2-2ax-3a(a<0)交x軸于點A,B(A在B的左側(cè)),交y軸于點C.
(1)求點A的坐標(biāo);
(2)若經(jīng)過點A的直線y=kx+k交拋物線于點D.
①當(dāng)k>0且a=-1時AD交線段BC于E,交y軸于點F,求S△EBD-S△CEF的最大值;
②當(dāng)k<0且k=a時,設(shè)P為拋物線對稱軸上一動點,點Q是拋物線上的動點,那么以A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標(biāo),若不能,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)A(-1,0);
(2)①;
②存在,(1,-);或(1,-4).
(2)①
81
32
②存在,(1,-
26
7
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/28 15:0:8組卷:127引用:2難度:0.3
相似題
-
1.對于平面直角坐標(biāo)系xOy中的點P(m,n),定義一種變換:作點P(m,n)關(guān)于y軸對稱的點P′,再將P′向左平移k(k>0)個單位得到點Pk′,Pk′叫做對點P(m,n)的k階“?”變換.若一個函數(shù)圖象上所有點都進行了k階“?”變換后組成的圖形稱為此函數(shù)進行了k階“?”變換后的圖形.
(1)求P(3,2)的3階“?”變換后P3′的坐標(biāo);
(2)若直線y=x+1經(jīng)過k階“?”變換后的圖象與反比例函數(shù)的圖象y=沒有公共點,求k的取值范圍.2x
(3)若拋物線C1:y=x2-4x+3與直線l:y=-x+3交于A,B兩點,拋物線C1經(jīng)過k階“?”變換后的圖象記為C2,C2與直線l交于C,D兩點,若=CDAB,求k的值.73發(fā)布:2025/6/22 7:30:1組卷:186引用:1難度:0.1 -
2.如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+
與y軸相交于點A,點B與點O關(guān)于點A對稱14
(1)填空:點B的坐標(biāo)是 ;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標(biāo).發(fā)布:2025/6/22 7:30:1組卷:1970引用:5難度:0.3 -
3.六個函數(shù)分別是①y=x;②y=-x+1;③y=x2;④y=-x2+2x-1;⑤y=x3;⑥y=-x3+1.
(1)其中一次函數(shù)是①,②,二次函數(shù)是③,④,則⑤,⑥的函數(shù)可以定義為
(2)我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x3的圖象和性質(zhì);
①填寫下表,畫出函數(shù)的圖象;
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
(3)若點A(a,b)(a>0)是函數(shù)y=x3圖象上一點,點A關(guān)于y軸的對稱點為點B,點A關(guān)于原點O的對稱點為點C,若順次連接A,B,C,則△ABC的形狀為x … -2 - 32-1 0 1 322 … y=x3 … …
(4)函數(shù)y=-x3+1的圖象關(guān)于點發(fā)布:2025/6/22 8:30:1組卷:47引用:2難度:0.3