如圖,在△ABC的邊BC上取一點O,以O為圓心,OC為半徑畫⊙O,⊙O與邊AB相切于點D,AC=AD,連接OA交⊙O于點E,連接CE,并延長交線段AB于點F.
(1)求證:AC是⊙O的切線;
(2)若AB=10,tanB=43,求⊙O的半徑;
(3)若F是AB的中點,求證:CE+BD=AF.
4
3
【考點】圓的綜合題.
【答案】(1)見解析;(2);(3)見解析.
8
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/5/22 8:0:2組卷:591難度:0.3
相似題
-
1.如圖,△ABC為等腰直角三角形,且∠B=90°,點D為線段AB上的動點,過點A作AE⊥AB,使得AE=AD,作△AED的外接圓交CE于點F,連結AC,分別交DE、DF于點M、N,連結CD.
(1)已知AB=5,BD=2,求 S△CED;
(2)求證:;NDCD=ANAC
(3)若,求ANNC=21.EFFC發(fā)布:2025/5/22 12:30:1組卷:391引用:1難度:0.2 -
2.對于點P和圖形G,若在圖形G上存在不重合的點M和點N,使得點P關于線段MN中點的對稱點在圖形G上,則稱點P是圖形G的“中稱點”.在平面直角坐標系xOy中,已知點A(1,0),B(1,1),C(0,1).
(1)在點P1(,0),P2(12,12),P3(1,-2),P4(-1,2)中,是正方形OABC的“中稱點”;12
(2)⊙T的圓心在x軸上,半徑為1.
①當圓心T與原點O重合時,若直線y=x+m上存在⊙T的“中稱點”,求m的取值范圍;
②若正方形OABC的“中稱點”都是⊙T的“中稱點”,直接寫出圓心T的橫坐標t的取值范圍.發(fā)布:2025/5/22 13:0:1組卷:687引用:4難度:0.1 -
3.“同弧或等弧所對的圓周角相等”,利用這個推論可以解決很多數學問題.
(1)【知識理解】如圖1,圓O的內接四邊形ACBD中,∠ABC=60°,BC=AC,①∠BDC=;∠DAB ∠DCB(填“>”,“=”,“<”);②將D點繞點B順時針旋轉60°得到點E,則線段DB,DC,DA的關系為 ;
(2)【知識應用】如圖2,AB是圓O的直徑,,猜想DA,DB,DC的數量關系,并證明;tan∠ABC=12
(3)【知識拓展】如圖3,已知AB=2,A,B分別是射線DM,DN上的兩個動點,以AB為邊往外構造等邊△ABC,點C在∠MDN內部,若∠D=120°,直接寫出四邊形ADBC面積S的取值范圍.發(fā)布:2025/5/22 13:30:1組卷:234引用:1難度:0.2
相關試卷