為了豐富業(yè)余生活,甲、乙、丙三人進行羽毛球比賽.比賽規(guī)則如下:①每場比賽有兩人參加,并決出勝負;②每場比賽獲勝的人與未參加此場比賽的人進行下一場的比賽;③依次循環(huán),直到有一個人首先獲得兩場勝利,則本次比賽結(jié)束,此人為本次比賽的冠軍.已知在每場比賽中,甲勝乙的概率為23,甲勝丙的概率為35,乙勝丙的概率為12.
(1)求甲、乙、丙三人共進行了3場比賽且丙獲得冠軍的概率;
(2)求甲和乙先賽且甲獲得冠軍的概率.
2
3
3
5
1
2
【考點】相互獨立事件和相互獨立事件的概率乘法公式.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/15 8:0:9組卷:310引用:3難度:0.6
相似題
-
1.甲、乙兩人進行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12發(fā)布:2024/12/29 12:0:2組卷:243引用:6難度:0.6 -
2.小王同學進行投籃練習,若他第1球投進,則第2球投進的概率為
;若他第1球投不進,則第2球投進的概率為23.若他第1球投進概率為13,他第2球投進的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻血活動,假設每個獻血者到達采血站是隨機的,并且每個獻血者到達采血站和其他的獻血者到達采血站是相互獨立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻血者到達采血站獻血,用隨機模擬的方法來估計一下,這10位獻血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
把好題分享給你的好友吧~~