試卷征集
加入會員
操作視頻

綜合與實踐
問題情境
在學(xué)習(xí)了《勾股定理》和《實數(shù)》后,某班同學(xué)以“已知三角形三邊的長度,求三角形面積”為主題開展了數(shù)學(xué)活動.
操作發(fā)現(xiàn)
“畢達哥拉斯”小組的同學(xué)想到借助正方形網(wǎng)格解決問題.如圖1是6×6的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C、A,他們借助此圖求出了△ABC的面積.菁優(yōu)網(wǎng)
(1)在圖1中,所畫的△ABC的三邊長分別是AB=
5
5
,BC=
17
17
,AC=
10
10
;△ABC的面積為
13
2
13
2

實踐探究
(2)在圖2所示的正方形網(wǎng)格中畫出△DEF(頂點都在格點上),使DE=
5
,DF=
13
,EF=
20
,并寫出△DEF的面積.
繼續(xù)探究
“秦九韶”小組的同學(xué)想到借助曾經(jīng)閱讀的數(shù)學(xué)資料:
已知三角形的三邊長分別為a、b、c,求其面積,對此問題中外數(shù)學(xué)家曾經(jīng)進行過深入研究.古希臘的幾何學(xué)家海倫(Heron,約公元50年),在他的著作《度量》一書中,給出了求其面積的海倫公式
S
=
p
p
-
a
p
-
b
p
-
c
其中
p
=
a
+
b
+
c
2

我國南宋時期數(shù)學(xué)家秦九韶(約1202~1261),給出了著名的秦九韶公式
S
=
1
4
[
a
2
b
2
-
a
2
+
b
2
-
c
2
2
2
]

(3)一個三角形的三邊長依次為
5
,
6
7
,請你從上述材料中選用適當(dāng)?shù)墓角筮@個三角形的面積.(寫出計算過程)

【答案】5;
17
10
;
13
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/5 9:0:8組卷:451引用:4難度:0.7
相似題
  • 菁優(yōu)網(wǎng)1.如圖,以Rt△ABC的三邊為直徑分別向外作半圓,若斜邊AB=3,則圖中陰影部分的面積為(  )

    發(fā)布:2024/11/2 14:0:2組卷:2547引用:14難度:0.7
  • 2.我們把邊長與面積都是整數(shù)的三角形稱“整數(shù)三角形”,例如邊長為3,4,5的三角形因為其面積等于6,所以它是一個“整數(shù)三角形”如圖(1),小明在研究時發(fā)現(xiàn),直角三角形中存在大量的“整數(shù)三角形”;小穎在研究時發(fā)現(xiàn),等腰三角形中也存在大量的”整數(shù)三角形”,
    (1)如圖(2),已知Rt△ABC中,∠ACB=90°,AC=8,BC=15,△ABC是一個”整數(shù)三角形”嗎?請說明理由;
    (2)請在下面分別畫出一個周長為24的直角“整數(shù)三角形”和一個周長小于32的等腰“整數(shù)三角形”,說明:在圖中標(biāo)注每條邊的長.
    (3)小明經(jīng)過研究發(fā)現(xiàn)非等腰的鈍角三角形中也存在“整數(shù)三角形”,請畫出一個非等腰的鈍角“整數(shù)三角形”,使其周長等于32,說明:畫出計算面積所需的三角形的高,并在圖上標(biāo)出高和邊長的數(shù)值.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/4 8:0:2組卷:133引用:1難度:0.5
  • 菁優(yōu)網(wǎng)3.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BH平分∠ABC,BH=6,P是邊AB上一動點,則H,P之間的最小距離為( ?。?/h2>

    發(fā)布:2024/11/6 22:30:2組卷:148引用:4難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正