如圖1,拋物線y=-36x2+233x+23與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B右側(cè))與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),連接AD、BD.
(1)求△ABD的面積
(2)如圖2,連接AC、BC,若點(diǎn)P是直線AC上方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥BC交AC于點(diǎn)E,作PQ∥y軸交AC于點(diǎn)Q,當(dāng)△PQE周長(zhǎng)為9+934時(shí),求點(diǎn)P的坐標(biāo);點(diǎn)N位x軸上一動(dòng)點(diǎn),求PN-12AN的最小值;
(3)如圖3,點(diǎn)G為x軸正半軸上一點(diǎn),且OG=OC,連接CG,過(guò)點(diǎn)G作GH⊥AC于點(diǎn)H,將△CGH繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<180°),記旋轉(zhuǎn)中的△CGH為△C'G'H',在旋轉(zhuǎn)過(guò)程中,直線C'G',G'H'分別與直線AC交于點(diǎn)M,N,△G′MN能否成為等腰三角形?若能請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的α的值;若不能,請(qǐng)說(shuō)明理由.

3
6
2
3
3
3
9
+
9
3
4
1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:321引用:1難度:0.3
相似題
-
1.如圖,已知直線AB與拋物線C:y=ax2+2x+c相交于點(diǎn)A(-1,0)和點(diǎn)B(2,3)兩點(diǎn).
(1)求拋物線C函數(shù)表達(dá)式;
(2)若點(diǎn)M是位于直線AB上方拋物線上的一動(dòng)點(diǎn),以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時(shí),求此時(shí)平行四邊形MANB的面積S及點(diǎn)M的坐標(biāo);
(3)在拋物線C的對(duì)稱(chēng)軸上是否存在定點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離?若存在,求出定點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.174發(fā)布:2025/6/3 19:0:1組卷:2109引用:10難度:0.6 -
2.在平面直角坐標(biāo)系中,若對(duì)于任意兩點(diǎn)A(x1,y1)、B(x2,y2),都有x1+x2=y1+y2,則稱(chēng)A、B兩點(diǎn)互為“友好點(diǎn)”.
(1)已知點(diǎn)A(1,4),若B(2,1)、C(0,-3)、D(2,-2),則點(diǎn)A的“友好點(diǎn)”是 ;
(2)若A(1,4)、P(m,n)都在雙曲線上,且A、P兩點(diǎn)互為“友好點(diǎn)”.請(qǐng)求出點(diǎn)P的坐標(biāo);y=kx
(3)已知拋物線y=ax2+2bx+3c(a≠0,a,b,c為常數(shù)).頂點(diǎn)為D點(diǎn),與x軸交于A、B兩點(diǎn),與直線y=bx+2c交于P、Q兩點(diǎn).若滿(mǎn)足①拋物線過(guò)點(diǎn)(0,-3);②△DAB為等邊三角形;③P、Q兩點(diǎn)互為“友好點(diǎn)”.求(b-a-199c)的值.發(fā)布:2025/6/3 16:30:1組卷:859引用:3難度:0.2 -
3.定義:若二次函數(shù)y=a1(x-h)2+k的圖象記為C1,其頂點(diǎn)為A(h,k),二次函數(shù)y=a2(x-k)2+h的圖象記為C2,其頂點(diǎn)為B(k,h),我們稱(chēng)這樣的兩個(gè)二次函數(shù)互為“反頂二次函數(shù)”.
分類(lèi)一:若二次函數(shù)C1:y=a1(x-h)2+k經(jīng)過(guò)C2的頂點(diǎn)B,且C2:y=a2(x-k)2+h經(jīng)過(guò)C1的頂點(diǎn)A,我們就稱(chēng)它們互為“反頂伴侶二次函數(shù)”.
(1)所有二次函數(shù)都有“反頂伴侶二次函數(shù)”是 命題.(填“真”或“假”)
(2)試求出y=x2-4x+5的“反頂伴侶二次函數(shù)”.
(3)若二次函數(shù)C1與C2互為“反頂伴侶二次函數(shù)”,試探究a1與a2的關(guān)系,并說(shuō)明理由.
分類(lèi)二:若二次函數(shù)C1:y=a1(x-h)2+k可以繞點(diǎn)M旋轉(zhuǎn)180°得到二次函數(shù)C2:y=a2(x-k)2+h,我們就稱(chēng)它們互為“反頂旋轉(zhuǎn)二次函數(shù)”.
①任意二次函數(shù)都有“反頂旋轉(zhuǎn)二次函數(shù)”是 命題.(填“真”或“假”)
②互為“反頂旋轉(zhuǎn)二次函數(shù)”的對(duì)稱(chēng)中心點(diǎn)M有什么特點(diǎn)?
③如圖,C1,C2互為“反頂旋轉(zhuǎn)二次函數(shù)”,點(diǎn)E,F(xiàn)的對(duì)稱(chēng)點(diǎn)分別是點(diǎn)Q,G,且EF∥GQ∥x軸,當(dāng)四邊形EFQG為矩形時(shí),試探究二次函數(shù)C1,C2的頂點(diǎn)有什么關(guān)系.并說(shuō)明理由.發(fā)布:2025/6/3 17:30:2組卷:129引用:1難度:0.1