【問(wèn)題情境】
(1)如圖1.四邊形ABCD是正方形,點(diǎn)E是AD邊上的一個(gè)動(dòng)點(diǎn),以CE為邊在CE的右側(cè)作正方形CEFG,連接DG、BE,則DG與BE的數(shù)量關(guān)系是 DG=BEDG=BE;
【類比探究】
(2)如圖2,四邊形ABGD是矩形,AB=3,BC=6,點(diǎn)E是AD邊上的一個(gè)動(dòng)點(diǎn),以CE為邊在CE的右側(cè)作矩形CEFG,且CG:CE=1:2,連接DG、BE.判斷線段DG與BE有怎樣的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
【拓展提升】
(3)如圖3,在(2)的條件下,連接BG,求2BG+BE的最小值.
(4)如圖3,在(2)的條件下,點(diǎn)E是從點(diǎn)A運(yùn)動(dòng)D點(diǎn),直接寫(xiě)出點(diǎn)G的運(yùn)動(dòng)路徑長(zhǎng)度.

【考點(diǎn)】四邊形綜合題.
【答案】DG=BE
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/27 16:0:2組卷:351引用:3難度:0.1
相似題
-
1.如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點(diǎn),MP⊥AB交邊CD于點(diǎn)P,連接NM,NP.
(1)若∠B=60°,這時(shí)點(diǎn)P與點(diǎn)C重合,則∠NMP=度;
(2)求證:NM=NP;
(3)當(dāng)△NPC為等腰三角形時(shí),求∠B的度數(shù).發(fā)布:2025/6/19 1:30:1組卷:2881引用:6難度:0.5 -
2.已知,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長(zhǎng)線)于點(diǎn)M,N,AH⊥MN于點(diǎn)H.
(1)如圖①,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),請(qǐng)你直接寫(xiě)出AH與AB的數(shù)量關(guān)系:.
(2)如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí),(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請(qǐng)寫(xiě)出理由,如果成立請(qǐng)證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,探求AH滿足的數(shù)量關(guān)系.(可利用(2)得到的結(jié)論)發(fā)布:2025/6/17 11:30:1組卷:879引用:1難度:0.3 -
3.如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于F,連接DF.
(1)證明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,試證明四邊形ABCD是菱形;
(3)在(2)的條件下,若BE⊥CD,試證明∠EFD=∠BCD.發(fā)布:2025/6/18 8:30:2組卷:215引用:3難度:0.1