試卷征集
加入會(huì)員
操作視頻

閱讀理解下列材料:
“數(shù)形結(jié)合“是一種非常重要的數(shù)學(xué)思想.在學(xué)習(xí)“整式的乘法”時(shí),我們通過構(gòu)造幾何圖形,用“等積法”直觀地推導(dǎo)出了完全平方和公式:(a+b)2=a2+2ab+b2(如圖1).所謂“等積法”就是用不同的方法表示同一個(gè)圖形的面積,從而得到一個(gè)等式.如圖1,從整體看是一個(gè)邊長(zhǎng)為a+b的正方形,其面積為(a+b)2.從局部看由四部分組成,即:一個(gè)邊長(zhǎng)為a的正方形,一個(gè)邊長(zhǎng)為b的正方形,兩個(gè)長(zhǎng)、寬分別為a,b的長(zhǎng)方形.這四部分的面積和為a2+2ab+b2.因?yàn)樗鼈儽硎镜氖峭粋€(gè)圖形的面積,所:以這兩個(gè)代數(shù)式應(yīng)該相等,即(a+b)2=a2+2ab+b.
同理,圖2可以得到一個(gè)等式:(a+b)(2a+b)=2a2+3ab+b2
根據(jù)以上材料提供的方法,完成下列問題:
(1)由圖3可得等式:
(a+2b)2=a2+4ab+4b2
(a+2b)2=a2+4ab+4b2
;
(2)由圖4可得等式:
(2a+b)(a+2b)=2a2+5ab+2b2
(2a+b)(a+2b)=2a2+5ab+2b2
;
(3)若a>0,b>0,c>0,且a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值.
①為了解決這個(gè)問題,請(qǐng)你利用數(shù)形結(jié)合思想,仿照前面的方法在下方空白處畫出相應(yīng)的幾何圖形,通過這個(gè)幾何圖形得到一個(gè)含有a,b,c的等式.
②根據(jù)你畫的圖形可得等式:
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac

③利用①的結(jié)論,求a2+b2+c2的值.

【答案】(a+2b)2=a2+4ab+4b2;(2a+b)(a+2b)=2a2+5ab+2b2;(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:207引用:3難度:0.6
相似題
  • 1.已知a,b,c為△ABC的三條邊的長(zhǎng),
    (1)當(dāng)b2+2ab=c2+2ac時(shí),試判斷△ABC屬于哪一類三角形;
    (2)判斷a2-b2-2bc-c2的值的符號(hào),并說明理由.

    發(fā)布:2025/7/1 13:0:6組卷:207引用:1難度:0.3
  • 2.已知:a>b>0,且a2+b2=
    10
    3
    ab,那么
    b
    +
    a
    b
    -
    a
    的值為
     

    發(fā)布:2025/6/25 7:30:2組卷:719引用:4難度:0.9
  • 3.若a2-ab=7-m,b2-ab=9+m,則a-b的值為( ?。?/h2>

    發(fā)布:2025/6/25 6:0:1組卷:581引用:2難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正