如圖,在三棱臺ABC-A1B1C1中,∠BAC=90°,AB=AC=4,A1A=A1B1=2,側(cè)棱A1A⊥平面ABC,點D是棱CC1的中點.
(1)證明:BB1⊥平面AB1C;
(2)求平面BCD與平面ABD的夾角的余弦值.
【考點】空間向量法求解二面角及兩平面的夾角;直線與平面垂直.
【答案】(1)證明見解析;
(2).
(2)
30
15
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/11 3:0:8組卷:107引用:6難度:0.6
相似題
-
1.“阿基米德多面體”也稱為半正多面體,是由邊數(shù)不全相同的正多邊形為面圍成的多面體,它體現(xiàn)了數(shù)學的對稱美.如圖,將一個正方體沿交于一頂點的三條棱的中點截去一個三棱錐,共可截去八個三棱錐,得到八個面為正三角形,六個面為正方形的“阿基米德多面體”,則該多面體中具有公共頂點的兩個正三角形所在平面的夾角正切值為( )
發(fā)布:2024/11/9 21:30:1組卷:176引用:3難度:0.5 -
2.如圖,三棱柱ABC-A1B1C1滿足棱長都相等且AA1⊥平面ABC,D是棱CC1的中點,E是棱AA1上的動點.設(shè)AE=x,隨著x增大,平面BDE與底面ABC所成銳二面角的平面角是( ?。?/h2>
發(fā)布:2024/12/11 21:0:1組卷:1658引用:12難度:0.3 -
3.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=2,BC=CC1=4,點D是棱AB的中點,則平面ABB1A1與平面B1CD所成角的正弦值為( ?。?/h2>
發(fā)布:2024/11/15 14:30:2組卷:452引用:2難度:0.6
相關(guān)試卷