已知橢圓C:x2a2+y2b2=1,過定點(diǎn)T(t,0)的直線交橢圓于P,Q兩點(diǎn),其中t∈(0,a).
(1)若橢圓短軸長為23且經(jīng)過點(diǎn)(-1,32),求橢圓方程;
(2)對(1)中的橢圓,若t=3,求△OPQ面積的最大值,并求此時直線PQ的方程;
(3)若直線PQ與x軸不垂直,問:在x軸上是否存在點(diǎn)S(s,0)使得∠PST=∠QST恒成立?如果存在,求出s,t的關(guān)系;如果不存在,說明理由.
C
:
x
2
a
2
+
y
2
b
2
=
1
2
3
(
-
1
,
3
2
)
t
=
3
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:73引用:1難度:0.5
相似題
-
1.已知橢圓C:
=1(a>b>0)的一個頂點(diǎn)坐標(biāo)為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點(diǎn)P,Q,線段PQ的中點(diǎn)為M,點(diǎn)B(1,0),求證:點(diǎn)M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5 -
2.設(shè)橢圓
+x2a2=1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點(diǎn),直線l與直線AB交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4440引用:26難度:0.3 -
3.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:456引用:3難度:0.6