當(dāng)前位置:
試題詳情
圓x2+y2=r2上有一點P(x0,y0),則過此點的圓的切線方程為x0x+y0y=r2,類比可得過橢圓x2a2+y2b2=1(a>b>0)上一點Q(x1,y1)的橢圓的切線方程為x1xa2+y1yb2=1x1xa2+y1yb2=1.
x
2
a
2
y
2
b
2
x
1
x
a
2
+
y
1
y
b
2
=
1
x
1
x
a
2
+
y
1
y
b
2
=
1
【答案】
x
1
x
a
2
+
y
1
y
b
2
=
1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/7 8:0:2組卷:25引用:1難度:0.7
相似題
-
1.函數(shù)y=tanx滿足tan(x
)=+π4由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿足f(x+a)=1+tanx1-tanx,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類比出函數(shù)f(x)的周期為.1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:5引用:1難度:0.7 -
2.已知
tan(x+π4)=1+tanx1-tanx,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且(x≠kπ+π4),那么函數(shù)y=f(x)的周期是( ?。?/h2>f(x+π)=1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:11引用:1難度:0.7 -
3.若
,x≠kπ+π4,則y=tanx的周期為π.類比可推出:設(shè)x∈R且tan(x+π4)=1+tanx1-tanx,則y=f(x)的周期是( ?。?/h2>f(x+π)=1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:36引用:1難度:0.5
把好題分享給你的好友吧~~