當(dāng)前位置:
2022-2023學(xué)年廣東省深圳市南山外國(guó)語(yǔ)學(xué)校(集團(tuán))高級(jí)中學(xué)高二(上)期中數(shù)學(xué)試卷>
試題詳情
阿波羅尼斯(約公元前262-190年)證明過(guò)這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)k(k>0,k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱(chēng)為阿氏圓.若平面內(nèi)兩定點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)P滿(mǎn)足|PA||PB|=2,當(dāng)P、A、B不共線(xiàn)時(shí),△PAB面積的最大值是( )
|
PA
|
|
PB
|
=
2
【考點(diǎn)】軌跡方程.
【答案】D
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:98引用:3難度:0.7
相似題
-
1.點(diǎn)P為△ABC所在平面內(nèi)的動(dòng)點(diǎn),滿(mǎn)足
=t(AP),t∈(0,+∞),則點(diǎn)P的軌跡通過(guò)△ABC的( )AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點(diǎn)E為BC的中點(diǎn).四棱錐P-ABCD的所有頂點(diǎn)都在同一個(gè)球面上,點(diǎn)M是該球面上的一動(dòng)點(diǎn),且PM⊥AE,則點(diǎn)M的軌跡的長(zhǎng)度為( )
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6 -
3.已知兩個(gè)定點(diǎn)A(-2,0),B(1,0),如果動(dòng)點(diǎn)P滿(mǎn)足|PA|=2|PB|.
(1)求點(diǎn)P的軌跡方程并說(shuō)明該軌跡是什么圖形;
(2)若直線(xiàn)l:y=kx+1分別與點(diǎn)P的軌跡和圓(x+2)2+(y-4)2=4都有公共點(diǎn),求實(shí)數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:42引用:3難度:0.5