若一個兩位數(shù)十位、個位上的數(shù)字分別為m,n,我們可將這個兩位數(shù)記為mn,易知mn=10m+n;同理,一個三位數(shù)、四位數(shù)等均可以用此記法,如abc=100a+10b+c.
【基礎訓練】
(1)解方程填空:
①若2x+x3=45,則x=22;
②若7y-y8=26,則y=44;
③若t93+5t8=13t1,則t=77;
【能力提升】
(2)交換任意一個兩位數(shù)mn的個位數(shù)字與十位數(shù)字,可得到一個新數(shù)nm,則mn+nm一定能被1111整除,mn-nm一定能被99整除,mn?nm-mn一定能被1010整除;(請從大于5的整數(shù)中選擇合適的數(shù)填空)
【探索發(fā)現(xiàn)】
(3)北京時間2019年4月10日21時,人類拍攝的首張黑洞照片問世,黑洞是一種引力極大的天體,連光都逃脫不了它的束縛.數(shù)學中也存在有趣的黑洞現(xiàn)象:任選一個三位數(shù),要求個、十、百位的數(shù)字各不相同,把這個三位數(shù)的三個數(shù)字按大小重新排列,得出一個最大的數(shù)和一個最小的數(shù),用得出的最大的數(shù)減去最小的數(shù)得到一個新數(shù)(例如若選的數(shù)為325,則用532-235=297),再將這個新數(shù)按上述方式重新排列,再相減,像這樣運算若干次后一定會得到同一個重復出現(xiàn)的數(shù),這個數(shù)稱為“卡普雷卡爾黑洞數(shù)”.
①該“卡普雷卡爾黑洞數(shù)”為495495;
②設任選的三位數(shù)為abc(不妨設a>b>c),試說明其均可產(chǎn)生該黑洞數(shù).
mn
mn
abc
2
x
x
3
7
y
y
8
t
93
5
t
8
13
t
1
mn
nm
mn
nm
mn
nm
mn
nm
abc
【考點】因式分解的應用.
【答案】2;4;7;11;9;10;495
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2106引用:19難度:0.4
相似題
-
1.對于一個各數(shù)位上的數(shù)字均不為0的三位自然數(shù)p,將它各個數(shù)位上的數(shù)字平方后再取其個位,得到三個新的數(shù)字;再將這三個新數(shù)字重新組合成三位數(shù)
,當|x+2y-z|的值最小時,稱此時的xyz為自然數(shù)p的理想數(shù),并規(guī)定K(p)=(x-z)2+y,例如245,各數(shù)字平方后取個位分別為4,6,5,再重新組合為465,456,546,564,654,645,因為|5+2×4-6|=7最小,所以546是原三位數(shù)245的理想數(shù),此時K(p)=(5-6)2+4=5;xyz
若一個三位正整數(shù)的十位數(shù)字是個位數(shù)字的2倍,則稱這個數(shù)為自信數(shù),例如384,其中8=4×2,所以384是自信數(shù);對于一個各數(shù)位上的數(shù)字均不為0三位正整數(shù)p,把它的個位數(shù)字和百位數(shù)字交換所得的新三位數(shù)記為p1,把它的個位數(shù)字和十位數(shù)字交換所得到的新三位數(shù)記為p2,若p1,p2,p這三個數(shù)的和能被29整除,則稱這個數(shù)p為成功數(shù).若一個成功數(shù)p也是自信數(shù),求所以符合條件的成功數(shù)中K(p)的最小值.發(fā)布:2025/5/24 19:30:1組卷:64引用:1難度:0.4 -
2.若2x-y=3,xy=3,則4x2+y2=.
發(fā)布:2025/5/24 23:0:1組卷:203引用:2難度:0.6 -
3.對于各位數(shù)字都不為0的兩位數(shù)m和三位數(shù)n,將m中的任意一個數(shù)字作為一個新的兩位數(shù)的十位數(shù)字,將n中的任意一個數(shù)字作為該新數(shù)的兩位數(shù)的個位數(shù)字,按照這種方式產(chǎn)生的所有新的兩位數(shù)的和記為F(m,n),例如:F(12,345)=13+14+15+23+24+25=114
(1)F(24,579)=,并求證:當n能被3整除時,F(xiàn)(m,n)一定能被6整除;
(2)若一個兩位數(shù)s=21x+y,一個三位數(shù)t=12x+y+198(其其中1≤x≤4,1≤y≤5,且x、y均為整數(shù)).交換三位數(shù)t的百位數(shù)字和個位數(shù)字得到新數(shù)t′,當t′與s的個位數(shù)字的3倍的和被7除余1時,稱這樣的兩個數(shù)s和t為“幸運數(shù)對”,求所有“幸運數(shù)對”中F(s,t)的最大值.發(fā)布:2025/5/24 20:30:2組卷:90引用:1難度:0.4