已知函數(shù)f(x)=mx+n1+x2是定義在[-12,12]上是奇函數(shù),且f(-14)=817
(1)確定函數(shù)f(x)解析式
(2)用定義證明函數(shù)f(x)在[-12,12]上是減函數(shù)
(3)若實數(shù)t滿足f(t3)+f(t+1)<0,求t的取值范圍.
mx
+
n
1
+
x
2
1
2
1
2
1
4
8
17
1
2
,
1
2
t
3
【考點】奇偶性與單調性的綜合.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:18引用:2難度:0.5
相似題
-
1.設f(x)是連續(xù)的偶函數(shù),且當x>0時,f(x)是單調函數(shù),則滿足f(x)=f(
)的所有x之和為( ?。?/h2>x+3x+4A.-8 B.-3 C.8 D.3 發(fā)布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,1)上單調遞增的函數(shù)是( ?。?/h2>
A.y=x?|x| B.y=sinx C. y=(12)|x|D.y=-cos(π?x) 發(fā)布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x∈(0,+∞)時,f(x)=2log2(2x+1)-1,則下列說法正確的是( ?。?/h2>
A. f(-72)=5B.當x∈(-∞,0)時,f(x)=1-2log2(-2x+1) C.f(x)在R上單調遞增 D.不等式f(x)≥1的解集為 [12,+∞)發(fā)布:2024/12/28 23:30:2組卷:69引用:8難度:0.6
把好題分享給你的好友吧~~