已知函數(shù)f(x)=ex+ax2-e2x(a∈R).
(1)若函數(shù)g(x)=f(x)+(e2-1)x在[0,+∞)上單調(diào)遞增,求實數(shù)a的最小值;
(2)若函數(shù)f(x)在(0,1)上有兩個極值點x1,x2(x1<x2).
(?。┣髮崝?shù)a的取值范圍;
(ⅱ)求證:(x1-e4a+1)(x2-e4a+1)>4.
f
(
x
)
=
e
x
+
a
x
2
-
e
2
x
g
(
x
)
=
f
(
x
)
+
(
e
2
-
1
)
x
(
x
1
-
e
4
a
+
1
)
(
x
2
-
e
4
a
+
1
)
>
4
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:131引用:2難度:0.3
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時,求f'(x)的零點;
(2)若函數(shù)f(x)存在極小值點,求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個極值點,則實數(shù)a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”且“拐點”就是三次函數(shù)圖像的對稱中心,已知函數(shù)
的對稱中心為(1,1),則下列說法中正確的有( )f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:149引用:6難度:0.5
把好題分享給你的好友吧~~