已知拋物線與x軸交于A(-1,0)、C(3,0),與y軸交于點B(0,-3).
(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)在x軸上是否存在點P,使△PBC為等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;
(3)點M為拋物線上一動點,在直線BC上是否存在點Q,使以點O、B、Q、M為頂點的四邊形為平行四邊形?若存在,求出Q點的坐標;若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3;(2)在x軸上存在點P,使△PBC為等腰三角形,P點坐標為(0,0)或(3-3,0)或(3+3,0)或(-3,0);(3)在直線BC上存在點Q,使以點O、B、Q、M為頂點的四邊形為平行四邊形,Q點的坐標為(,)或(,)或Q(,)或Q(-,-).理由見解析.
2
2
3
+
21
2
-
3
+
21
2
3
-
21
2
-
3
-
21
2
21
-
3
2
21
-
9
2
3
+
21
2
9
+
21
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/13 4:0:9組卷:269引用:2難度:0.5
相似題
-
1.(1)在△ABC中,AB=AC=5,BC=8,點P、Q分別在射線CB、AC上(點P不與點C、點B重合),且保持∠APQ=∠ABC.
①若點P在線段CB上(如圖),且BP=6,求線段CQ的長;
②若BP=x,CQ=y,求y與x之間的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)正方形ABCD的邊長為5(如圖),點P、Q分別在直線CB、DC上(點P不與點C、點B重合),且保持∠APQ=90度.當CQ=1時,寫出線段BP的長(不需要計算過程,請直接寫出結(jié)果).發(fā)布:2025/6/21 20:0:2組卷:599引用:4難度:0.4 -
2.如圖,在平面直角坐標系中,拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點,與y軸交于點C,連接AC,已知tan∠CAO=2,點B(-4,0).
(1)求這個拋物線的解析式;
(2)在拋物線上B,C兩點間有一動點P,點E為線段AC的中點,連接BE、BP、PC,求四邊形BPCE面積的最大值;
(3)將拋物線沿射線CA方向平移個單位長度得到新拋物線y',新拋物線y'與原拋物線對稱軸交于點F,點G為直線y=1上的一個動點,H為平面內(nèi)任意一點,請直接寫出點G的橫坐標,使得以點F,B,G,H為頂點構(gòu)成的四邊形是以BF為邊的菱形.5發(fā)布:2025/6/21 23:0:2組卷:318引用:3難度:0.3 -
3.如圖,在平面直角坐標系中,拋物線y=-
x2+14x+4與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.32
(1)點B與點D的坐標;
(2)點P是第一象限內(nèi)拋物線上位于對稱軸右側(cè)的一個動點,設(shè)點P點的橫坐標為m,且S△CDP=S△ABC,求m的值;1120
(3)K是拋物線上一個動點,在平面直角坐標系中是否存在點H,使B、C、K、H為頂點的四邊形成為矩形?若存在,直接寫出點H的坐標;若不存在,說明理由.發(fā)布:2025/6/21 23:0:2組卷:113引用:1難度:0.3